Exercise for the break
We want to realize as many bijective mappings as possible from the fingertips of the left hand to the fingertips of the right hand, by letting the corresponding
(according to the assignment)
fingertips touch each other.
Realize the "natural“ bijection.
Realize those bijections, where two adjacent fingertips swap their natural counterparts, and where the other three fingertips touch their natural counterparts
(adjacent transposition).
Realize those bijections, where two fingertips swap their natural counterparts, and where the other three fingertips touch their natural counterparts
(transposition).
Realize those bijections, where exactly two fingertips touch their natural counterparts.
Realize those bijections, where exactly one fingertip touches its natural counterpart.
Realize those bijections, where no fingertip touches its natural counterpart.
Exercises
Give examples of
mappings
φ
,
ψ
:
N
⟶
N
{\displaystyle \varphi ,\psi \colon \mathbb {N} \longrightarrow \mathbb {N} }
such that
φ
{\displaystyle {}\varphi }
is
injective
but not
surjective ,
and
ψ
{\displaystyle {}\psi }
is surjective but not injective.
What functions
(and their defining rules)
do you know from school?
How can we recognize by looking at the
graph
of a mapping
f
:
R
⟶
R
{\displaystyle f\colon \mathbb {R} \longrightarrow \mathbb {R} }
whether
f
{\displaystyle {}f}
is
injective
or
surjective ?
Which
bijective
functions
f
:
R
→
R
{\displaystyle {}f\colon \mathbb {R} \rightarrow \mathbb {R} }
(or between subsets of
R
{\displaystyle {}\mathbb {R} }
)
do you know from school? What is the name of the
inverse function ?
Let
H
{\displaystyle {}H}
be the set of all
(alive or dead)
people. Study the mapping
φ
:
H
⟶
H
{\displaystyle \varphi \colon H\longrightarrow H}
that assigns to every person the mother, with respect to injectivity and surjectivity.
What is the meaning of the composition
φ
3
{\displaystyle {}\varphi ^{3}}
?
How does it look when we take the same mapping but, in the domain, restricted to the set
E
{\displaystyle {}E}
of all only children, and, in the codomain, restricted to the set
M
{\displaystyle {}M}
of all mothers?
Be a bit hairsplitting and argue
(referring to evolution or religion)
that the mapping in (1) is not well-defined.
A function
f
:
R
⟶
R
,
x
⟼
f
(
x
)
,
{\displaystyle f\colon \mathbb {R} \longrightarrow \mathbb {R} ,x\longmapsto f(x),}
is called strictly increasing if for all
x
1
,
x
2
∈
R
{\displaystyle {}x_{1},x_{2}\in \mathbb {R} }
satisfying
x
1
<
x
2
{\displaystyle {}x_{1}<x_{2}}
,
also
f
(
x
1
)
<
f
(
x
2
)
{\displaystyle {}f(x_{1})<f(x_{2})}
holds. Show that a strictly increasing function
f
{\displaystyle {}f}
is
injective .
Is the mapping
Q
≥
0
⟶
Q
≥
0
,
x
⟼
x
2
,
{\displaystyle \mathbb {Q} _{\geq 0}\longrightarrow \mathbb {Q} _{\geq 0},x\longmapsto x^{2},}
injective ?
Is it
surjective ?
Is the mapping
φ
:
N
+
×
N
+
⟶
N
+
×
N
+
×
N
+
,
(
a
,
b
)
⟼
(
a
+
b
,
a
b
,
a
b
)
,
{\displaystyle \varphi \colon \mathbb {N} _{+}\times \mathbb {N} _{+}\longrightarrow \mathbb {N} _{+}\times \mathbb {N} _{+}\times \mathbb {N} _{+},(a,b)\longmapsto (a+b,ab,a^{b}),}
injective ,
or not?
Determine the
compositions
φ
∘
ψ
{\displaystyle {}\varphi \circ \psi }
and
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
for the
mappings
φ
,
ψ
:
R
→
R
{\displaystyle {}\varphi ,\psi \colon \mathbb {R} \rightarrow \mathbb {R} }
that are defined by
φ
(
x
)
=
x
3
+
3
x
2
−
4
and
ψ
(
x
)
=
x
2
+
5
x
−
3.
{\displaystyle \varphi (x)=x^{3}+3x^{2}-4\,\,{\text{ and }}\,\,\psi (x)=x^{2}+5x-3.}
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets, let
F
:
L
→
M
{\displaystyle {}F\colon L\rightarrow M}
and
G
:
M
→
N
{\displaystyle {}G\colon M\rightarrow N}
denote
surjective mappings .
Show that the
composition
G
∘
F
{\displaystyle {}G\circ F}
is also surjective.
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets, let
F
:
L
→
M
{\displaystyle {}F\colon L\rightarrow M}
and
G
:
M
→
N
{\displaystyle {}G\colon M\rightarrow N}
denote
injective mappings .
Show that the
composition
G
∘
F
{\displaystyle {}G\circ F}
is also injective.
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets and let
f
:
L
⟶
M
and
g
:
M
⟶
N
{\displaystyle f:L\longrightarrow M{\text{ and }}g:M\longrightarrow N}
be
mappings
with their
composition
g
∘
f
:
L
⟶
N
,
x
⟼
g
(
f
(
x
)
)
.
{\displaystyle g\circ f\colon L\longrightarrow N,x\longmapsto g(f(x)).}
Show that if
g
∘
f
{\displaystyle {}g\circ f}
is
injective ,
then also
f
{\displaystyle {}f}
is injective.
In the following exercises about the power set, it might be helpful to think of the interpretation where
G
{\displaystyle {}G}
is the set of people in the course, and
M
=
P
(
G
)
{\displaystyle {}M={\mathfrak {P}}\,(G)}
is the set of all possible parties
(with respect to the guests).
For
Exercise 2.16
,
one might think of
A
=
{\displaystyle {}A=}
ladies in the course,
B
=
{\displaystyle {}B=}
gentlemen in the course.
Let
G
{\displaystyle {}G}
be a set, and
P
(
G
)
{\displaystyle {}{\mathfrak {P}}\,(G)}
its
power set .
Show that the mapping
P
(
G
)
⟶
P
(
G
)
,
T
⟼
∁
T
,
{\displaystyle {\mathfrak {P}}\,(G)\longrightarrow {\mathfrak {P}}\,(G),T\longmapsto \complement T,}
is
bijective .
How does the
inverse mapping
look?
Let
G
{\displaystyle {}G}
be a set. Define a
bijection
between
P
(
G
)
and
Map
(
G
,
{
0
,
1
}
)
.
{\displaystyle {\mathfrak {P}}\,(G)\,\,{\text{ and }}\,\,\operatorname {Map} \,{\left(G,\{0,1\}\right)}.}
Let
G
{\displaystyle {}G}
be a set, which is given as a
disjoint union
G
=
A
⊎
B
.
{\displaystyle {}G=A\uplus B\,.}
Define a
bijection
between the
power set
P
(
G
)
{\displaystyle {}{\mathfrak {P}}\,(G)}
and the
product set
P
(
A
)
×
P
(
B
)
{\displaystyle {}{\mathfrak {P}}\,(A)\times {\mathfrak {P}}\,(B)}
.
Let
M
,
N
,
L
{\displaystyle {}M,N,L}
denote sets. Define a
bijection
between
Map
(
M
×
N
,
L
)
and
Map
(
M
,
Map
(
N
,
L
)
)
.
{\displaystyle \operatorname {Map} \,{\left(M\times N,L\right)}\,\,{\text{ and }}\,\,\operatorname {Map} \,{\left(M,\operatorname {Map} \,{\left(N,L\right)}\right)}.}
How can we visualize the
graph
of a mapping
φ
:
R
2
⟶
R
,
{\displaystyle \varphi \colon \mathbb {R} ^{2}\longrightarrow \mathbb {R} ,}
and the graph of a mapping
φ
:
R
⟶
R
2
?
{\displaystyle \varphi \colon \mathbb {R} \longrightarrow \mathbb {R} ^{2}?}
Let
F
:
L
→
M
{\displaystyle {}F\colon L\rightarrow M}
denote a
mapping .
Show that
taking preimages
P
(
M
)
⟶
P
(
L
)
,
T
⟼
F
−
1
(
T
)
,
{\displaystyle {\mathfrak {P}}\,(M)\longrightarrow {\mathfrak {P}}\,(L),T\longmapsto F^{-1}(T),}
fulfills the following properties
(for arbitrary subsets
T
,
T
1
,
T
2
⊆
M
{\displaystyle {}T,T_{1},T_{2}\subseteq M}
):
F
−
1
(
T
1
∩
T
2
)
=
F
−
1
(
T
1
)
∩
F
−
1
(
T
2
)
,
{\displaystyle {}F^{-1}(T_{1}\cap T_{2})=F^{-1}(T_{1})\cap F^{-1}(T_{2})\,,}
F
−
1
(
T
1
∪
T
2
)
=
F
−
1
(
T
1
)
∪
F
−
1
(
T
2
)
,
{\displaystyle {}F^{-1}(T_{1}\cup T_{2})=F^{-1}(T_{1})\cup F^{-1}(T_{2})\,,}
F
−
1
(
M
∖
T
)
=
L
∖
F
−
1
(
T
)
.
{\displaystyle {}F^{-1}(M\setminus T)=L\setminus F^{-1}(T)\,.}
Let
F
:
L
→
M
{\displaystyle {}F\colon L\rightarrow M}
be a
mapping .
Show that
taking images
P
(
L
)
⟶
P
(
M
)
,
S
⟼
F
(
S
)
,
{\displaystyle {\mathfrak {P}}\,(L)\longrightarrow {\mathfrak {P}}\,(M),S\longmapsto F(S),}
satisfies the following properties
(for arbitrary subsets
S
,
S
1
,
S
2
⊆
L
{\displaystyle {}S,S_{1},S_{2}\subseteq L}
):
F
(
S
1
∩
S
2
)
⊆
F
(
S
1
)
∩
F
(
S
2
)
{\displaystyle {}F(S_{1}\cap S_{2})\subseteq F(S_{1})\cap F(S_{2})}
,
F
(
S
1
∪
S
2
)
=
F
(
S
1
)
∪
F
(
S
2
)
{\displaystyle {}F(S_{1}\cup S_{2})=F(S_{1})\cup F(S_{2})}
,
F
(
L
∖
S
)
⊇
F
(
L
)
∖
F
(
S
)
{\displaystyle {}F(L\setminus S)\supseteq F(L)\setminus F(S)}
.
Show by examples that the inclusions in (1) and (3) might be strict.
Let
L
{\displaystyle {}L}
and
M
{\displaystyle {}M}
denote sets, and let
F
:
L
⟶
M
{\displaystyle F\colon L\longrightarrow M}
be a
mapping .
Show that
F
{\displaystyle {}F}
is
injective
if and only if
taking preimages
P
(
M
)
⟶
P
(
L
)
,
T
⟼
F
−
1
(
T
)
,
{\displaystyle {\mathfrak {P}}\,(M)\longrightarrow {\mathfrak {P}}\,(L),T\longmapsto F^{-1}(T),}
is
surjective .
Let
L
{\displaystyle {}L}
and
M
{\displaystyle {}M}
denote sets, and let
F
:
L
⟶
M
{\displaystyle F\colon L\longrightarrow M}
be a
mapping . Show that
F
{\displaystyle {}F}
is
surjective
if and only if
taking preimages
P
(
M
)
⟶
P
(
L
)
,
T
⟼
F
−
1
(
T
)
,
{\displaystyle {\mathfrak {P}}\,(M)\longrightarrow {\mathfrak {P}}\,(L),T\longmapsto F^{-1}(T),}
is
injective .
The idea of the following exercises came from http://jwilson.coe.uga.edu/emt725/Challenge/Challenge.html , also take a look at http://www.vier-zahlen.bplaced.net/raetsel.php .
We consider the mapping
Ψ
:
N
4
⟶
N
4
{\displaystyle \Psi \colon \mathbb {N} ^{4}\longrightarrow \mathbb {N} ^{4}}
that assigns to a four tuple
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
the four-tuple
(
|
b
−
a
|
,
|
c
−
b
|
,
|
d
−
c
|
,
|
a
−
d
|
)
.
{\displaystyle (\vert {b-a}\vert ,\vert {c-b}\vert ,\vert {d-c}\vert ,\vert {a-d}\vert ).}
We denote by
Ψ
n
{\displaystyle {}\Psi ^{n}}
the
n
{\displaystyle {}n}
-th fold
composition
of
Ψ
{\displaystyle {}\Psi }
with itself.
Compute
Ψ
(
6
,
5
,
2
,
8
)
,
Ψ
2
(
6
,
5
,
2
,
8
)
,
Ψ
3
(
6
,
5
,
2
,
8
)
,
Ψ
4
(
6
,
5
,
2
,
8
)
.
.
.
{\displaystyle \Psi (6,5,2,8),\,\Psi ^{2}(6,5,2,8),\,\Psi ^{3}(6,5,2,8),\,\Psi ^{4}(6,5,2,8)\,...}
until the result is the zero-tuple
(
0
,
0
,
0
,
0
)
{\displaystyle {}(0,0,0,0)}
.
Compute
Ψ
(
1
,
10
,
100
,
1000
)
,
Ψ
2
(
1
,
10
,
100
,
1000
)
,
Ψ
3
(
1
,
10
,
100
,
1000
)
,
Ψ
4
(
1
,
10
,
100
,
1000
)
.
.
.
{\displaystyle \Psi (1,10,100,1000),\,\Psi ^{2}(1,10,100,1000),\,\Psi ^{3}(1,10,100,1000),\,\Psi ^{4}(1,10,100,1000)\,...}
until the result is the zero-tuple
(
0
,
0
,
0
,
0
)
{\displaystyle {}(0,0,0,0)}
.
Show that
Ψ
4
(
0
,
0
,
n
,
0
)
=
(
0
,
0
,
0
,
0
)
{\displaystyle {}\Psi ^{4}(0,0,n,0)=(0,0,0,0)}
for every
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
We consider the mapping
Ψ
:
N
4
⟶
N
4
{\displaystyle \Psi \colon \mathbb {N} ^{4}\longrightarrow \mathbb {N} ^{4}}
that assigns to a four-tuple
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
the four-tuple
(
|
b
−
a
|
,
|
c
−
b
|
,
|
d
−
c
|
,
|
a
−
d
|
)
.
{\displaystyle (\vert {b-a}\vert ,\vert {c-b}\vert ,\vert {d-c}\vert ,\vert {a-d}\vert ).}
Determine whether
Ψ
{\displaystyle {}\Psi }
is
injective
and whether
Ψ
{\displaystyle {}\Psi }
is
surjective .
We consider the mapping
Ψ
:
N
4
⟶
N
4
{\displaystyle \Psi \colon \mathbb {N} ^{4}\longrightarrow \mathbb {N} ^{4}}
that assigns to a four-tuple
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
the four-tuple
(
|
b
−
a
|
,
|
c
−
b
|
,
|
d
−
c
|
,
|
a
−
d
|
)
.
{\displaystyle (\vert {b-a}\vert ,\vert {c-b}\vert ,\vert {d-c}\vert ,\vert {a-d}\vert ).}
Show that for any initial value
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
, after finitely many iterations, this map reaches the zero-tuple.
We consider the mapping
Ψ
:
Q
≥
0
4
⟶
Q
≥
0
4
{\displaystyle \Psi \colon \mathbb {Q} _{\geq 0}^{4}\longrightarrow \mathbb {Q} _{\geq 0}^{4}}
that assigns to a four-tuple of nonnegative rational numbers
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
the four-tuple
(
|
b
−
a
|
,
|
c
−
b
|
,
|
d
−
c
|
,
|
a
−
d
|
)
{\displaystyle (\vert {b-a}\vert ,\vert {c-b}\vert ,\vert {d-c}\vert ,\vert {a-d}\vert )}
Show that after finitely many iterations, this mapping yields the zero-tuple.
We will later deal with the question of how this mapping behaves with respect to real four-tuples; see in particular
Exercise 23.16
.
Hand-in-exercises
Determine the
composite functions
φ
∘
ψ
{\displaystyle {}\varphi \circ \psi }
and
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
for the
functions
φ
,
ψ
:
R
→
R
{\displaystyle {}\varphi ,\psi \colon \mathbb {R} \rightarrow \mathbb {R} }
,
defined by
φ
(
x
)
=
x
4
+
3
x
2
−
2
x
+
5
and
ψ
(
x
)
=
2
x
3
−
x
2
+
6
x
−
1.
{\displaystyle \varphi (x)=x^{4}+3x^{2}-2x+5\,\,{\text{ and }}\,\,\psi (x)=2x^{3}-x^{2}+6x-1.}
Show that there exists a
bijection
between
N
{\displaystyle {}\mathbb {N} }
and
Z
{\displaystyle {}\mathbb {Z} }
.
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets, and let
f
:
L
⟶
M
and
g
:
M
⟶
N
{\displaystyle f:L\longrightarrow M{\text{ and }}g:M\longrightarrow N}
be
mappings
with their
composite mapping
g
∘
f
:
L
⟶
N
,
x
⟼
g
(
f
(
x
)
)
.
{\displaystyle g\circ f\colon L\longrightarrow N,x\longmapsto g(f(x)).}
Show that if
g
∘
f
{\displaystyle {}g\circ f}
is
surjective ,
then also
g
{\displaystyle {}g}
is surjective.
Consider the set
M
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
}
{\displaystyle {}M=\{1,2,3,4,5,6,7,8\}}
,
and the
mapping
φ
:
M
⟶
M
,
x
⟼
φ
(
x
)
,
{\displaystyle \varphi \colon M\longrightarrow M,x\longmapsto \varphi (x),}
defined by the following table
x
{\displaystyle {}x}
1
{\displaystyle {}1}
2
{\displaystyle {}2}
3
{\displaystyle {}3}
4
{\displaystyle {}4}
5
{\displaystyle {}5}
6
{\displaystyle {}6}
7
{\displaystyle {}7}
8
{\displaystyle {}8}
φ
(
x
)
{\displaystyle {}\varphi (x)}
2
{\displaystyle {}2}
5
{\displaystyle {}5}
6
{\displaystyle {}6}
1
{\displaystyle {}1}
4
{\displaystyle {}4}
3
{\displaystyle {}3}
7
{\displaystyle {}7}
7
{\displaystyle {}7}
Compute
φ
1003
{\displaystyle {}\varphi ^{1003}}
, that is, the
1003
{\displaystyle {}1003}
-rd composition (or iteration) of
φ
{\displaystyle {}\varphi }
with itself.
Let
L
{\displaystyle {}L}
and
M
{\displaystyle {}M}
denote sets. We consider the mapping
Ψ
:
Map
(
L
,
M
)
⟶
Map
(
P
(
M
)
,
P
(
L
)
)
,
f
⟼
f
−
1
,
{\displaystyle \Psi \colon \operatorname {Map} \,{\left(L,M\right)}\longrightarrow \operatorname {Map} \,{\left({\mathfrak {P}}\,(M),{\mathfrak {P}}\,(L)\right)},f\longmapsto f^{-1},}
which assigns to a mapping the mapping given by
taking preimages .
a) Show that
Ψ
{\displaystyle {}\Psi }
is
injective .
b) Suppose
L
≠
∅
{\displaystyle {}L\neq \emptyset }
.
Show that
Ψ
{\displaystyle {}\Psi }
is not
surjective .
Exercise to give up
Please hand in solutions to the following exercise directly to the lecturer.
We consider the mapping
Ψ
:
N
4
⟶
N
4
{\displaystyle \Psi \colon \mathbb {N} ^{4}\longrightarrow \mathbb {N} ^{4}}
that assigns to a four-tuple
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
the four-tuple
(
|
b
−
a
|
,
|
c
−
b
|
,
|
d
−
c
|
,
|
a
−
d
|
)
.
{\displaystyle (\vert {b-a}\vert ,\vert {c-b}\vert ,\vert {d-c}\vert ,\vert {a-d}\vert ).}
Find an example of a four-tuple
(
a
,
b
,
c
,
d
)
{\displaystyle {}(a,b,c,d)}
with the property that all iterations
Ψ
n
(
a
,
b
,
c
,
d
)
{\displaystyle {}\Psi ^{n}(a,b,c,d)}
for
n
≤
25
{\displaystyle {}n\leq 25}
do not yield the zero-tuple. Check your result on http://www.vier-zahlen.bplaced.net/raetsel.php .