If an inner product is given, then we can define the length of a vector, and then also the distance between two vectors.
Let
V
{\displaystyle {}V}
denote a
vector space
over
K
{\displaystyle {}{\mathbb {K} }}
, endowed with an
inner product
⟨
−
,
−
⟩
{\displaystyle {}\left\langle -,-\right\rangle }
. For a vector
v
∈
V
{\displaystyle {}v\in V}
,
we call the real number
‖
v
‖
=
⟨
v
,
v
⟩
{\displaystyle {}\Vert {v}\Vert ={\sqrt {\left\langle v,v\right\rangle }}\,}
the
norm of
v
{\displaystyle {}v}
.
The inner product
⟨
v
,
v
⟩
{\displaystyle {}\left\langle v,v\right\rangle }
is always real and not negative; therefore, its square root is a uniquely determined real number. For a complex vector space with an inner product, it does not make any difference whether we determine the norm directly, or via the underlying real vector space, see
exercise .
Let
V
{\displaystyle {}V}
denote a
vector space
over
K
{\displaystyle {}{\mathbb {K} }}
, endowed with an
inner product
⟨
−
,
−
⟩
{\displaystyle {}\left\langle -,-\right\rangle }
. Let
‖
−
‖
{\displaystyle {}\Vert {-}\Vert }
denote the associated
norm. Then the Cauchy-Schwarz estimate holds, that is,
|
⟨
v
,
w
⟩
|
≤
‖
v
‖
⋅
‖
w
‖
{\displaystyle {}\vert {\left\langle v,w\right\rangle }\vert \leq \Vert {v}\Vert \cdot \Vert {w}\Vert \,}
for all
v
,
w
∈
V
{\displaystyle {}v,w\in V}
.
For
w
=
0
{\displaystyle {}w=0}
,
the statement holds. So suppose
w
≠
0
{\displaystyle {}w\neq 0}
,
hence, also
‖
w
‖
≠
0
{\displaystyle {}\Vert {w}\Vert \neq 0}
holds. Therefore, we have the estimates
0
≤
⟨
v
−
⟨
v
,
w
⟩
‖
w
‖
2
w
,
v
−
⟨
v
,
w
⟩
‖
w
‖
2
w
⟩
=
⟨
v
,
v
⟩
−
⟨
v
,
w
⟩
‖
w
‖
2
⟨
w
,
v
⟩
−
⟨
v
,
w
⟩
¯
‖
w
‖
2
⟨
v
,
w
⟩
+
⟨
v
,
w
⟩
⟨
v
,
w
⟩
¯
‖
w
‖
4
⟨
w
,
w
⟩
=
⟨
v
,
v
⟩
−
⟨
v
,
w
⟩
‖
w
‖
2
⟨
v
,
w
⟩
¯
−
⟨
v
,
w
⟩
¯
‖
w
‖
2
⟨
v
,
w
⟩
+
⟨
v
,
w
⟩
⟨
v
,
w
⟩
¯
‖
w
‖
2
=
⟨
v
,
v
⟩
−
⟨
v
,
w
⟩
⟨
v
,
w
⟩
¯
‖
w
‖
2
=
⟨
v
,
v
⟩
−
|
⟨
v
,
w
⟩
|
2
‖
w
‖
2
.
{\displaystyle {}{\begin{aligned}0&\leq \left\langle v-{\frac {\left\langle v,w\right\rangle }{\Vert {w}\Vert ^{2}}}w,v-{\frac {\left\langle v,w\right\rangle }{\Vert {w}\Vert ^{2}}}w\right\rangle \\&=\left\langle v,v\right\rangle -{\frac {\left\langle v,w\right\rangle }{\Vert {w}\Vert ^{2}}}\left\langle w,v\right\rangle -{\frac {\overline {\left\langle v,w\right\rangle }}{\Vert {w}\Vert ^{2}}}\left\langle v,w\right\rangle +{\frac {\left\langle v,w\right\rangle {\overline {\left\langle v,w\right\rangle }}}{\Vert {w}\Vert ^{4}}}\left\langle w,w\right\rangle \\&=\left\langle v,v\right\rangle -{\frac {\left\langle v,w\right\rangle }{\Vert {w}\Vert ^{2}}}{\overline {\left\langle v,w\right\rangle }}-{\frac {\overline {\left\langle v,w\right\rangle }}{\Vert {w}\Vert ^{2}}}\left\langle v,w\right\rangle +{\frac {\left\langle v,w\right\rangle {\overline {\left\langle v,w\right\rangle }}}{\Vert {w}\Vert ^{2}}}\\&=\left\langle v,v\right\rangle -{\frac {\left\langle v,w\right\rangle {\overline {\left\langle v,w\right\rangle }}}{\Vert {w}\Vert ^{2}}}\\&=\left\langle v,v\right\rangle -{\frac {\vert {\left\langle v,w\right\rangle }\vert ^{2}}{\Vert {w}\Vert ^{2}}}.\end{aligned}}}
Multiplication with
‖
w
‖
2
{\displaystyle {}\Vert {w}\Vert ^{2}}
and taking the square root yields the result.
◻
{\displaystyle \Box }
The first two properties follow directly from the definition of an
inner product.
The compatibility with multiplication follows from
‖
λ
v
‖
2
=
⟨
λ
v
,
λ
v
⟩
=
λ
⟨
v
,
λ
v
⟩
=
λ
λ
¯
⟨
v
,
v
⟩
=
|
λ
|
2
‖
v
‖
2
.
{\displaystyle {}\Vert {\lambda v}\Vert ^{2}=\left\langle \lambda v,\lambda v\right\rangle =\lambda \left\langle v,\lambda v\right\rangle =\lambda {\overline {\lambda }}\left\langle v,v\right\rangle =\vert {\lambda }\vert ^{2}\Vert {v}\Vert ^{2}\,.}
In order to prove the triangle estimate, we write
‖
v
+
w
‖
2
=
⟨
v
+
w
,
v
+
w
⟩
=
‖
v
‖
2
+
‖
w
‖
2
+
⟨
v
,
w
⟩
+
⟨
v
,
w
⟩
¯
=
‖
v
‖
2
+
‖
w
‖
2
+
2
Re
(
⟨
v
,
w
⟩
)
≤
‖
v
‖
2
+
‖
w
‖
2
+
2
|
⟨
v
,
w
⟩
|
.
{\displaystyle {}{\begin{aligned}\Vert {v+w}\Vert ^{2}&=\left\langle v+w,v+w\right\rangle \\&=\Vert {v}\Vert ^{2}+\Vert {w}\Vert ^{2}+\left\langle v,w\right\rangle +{\overline {\left\langle v,w\right\rangle }}\\&=\Vert {v}\Vert ^{2}+\Vert {w}\Vert ^{2}+2\operatorname {Re} \,{\left(\left\langle v,w\right\rangle \right)}\\&\leq \Vert {v}\Vert ^{2}+\Vert {w}\Vert ^{2}+2\vert {\left\langle v,w\right\rangle }\vert .\end{aligned}}}
Due to
fact ,
this is
≤
(
‖
v
‖
+
‖
w
‖
)
2
{\displaystyle {}\leq {\left(\Vert {v}\Vert +\Vert {w}\Vert \right)}^{2}}
. This estimate transfers to the square roots.
◻
{\displaystyle \Box }
With the following statement, the polarization identity , we can reconstruct the inner product from its associated norm.
Let
V
{\displaystyle {}V}
denote a
vector space
over
K
{\displaystyle {}{\mathbb {K} }}
, endowed with an
inner product
⟨
−
,
−
⟩
{\displaystyle {}\left\langle -,-\right\rangle }
. Let
‖
−
‖
{\displaystyle {}\Vert {-}\Vert }
denote the associated
norm. Then, in case
K
=
R
{\displaystyle {}{\mathbb {K} }=\mathbb {R} }
,
the relation
⟨
v
,
w
⟩
=
1
2
(
‖
v
+
w
‖
2
−
‖
v
‖
2
−
‖
w
‖
2
)
{\displaystyle {}\left\langle v,w\right\rangle ={\frac {1}{2}}{\left(\Vert {v+w}\Vert ^{2}-\Vert {v}\Vert ^{2}-\Vert {w}\Vert ^{2}\right)}\,}
holds, and, in case
K
=
C
{\displaystyle {}{\mathbb {K} }=\mathbb {C} }
,
the relation
⟨
v
,
w
⟩
=
1
4
(
‖
v
+
w
‖
2
−
‖
v
−
w
‖
2
+
i
‖
v
+
i
w
‖
2
−
i
‖
v
−
i
w
‖
2
)
{\displaystyle \left\langle v,w\right\rangle ={\frac {1}{4}}{\left(\Vert {v+w}\Vert ^{2}-\Vert {v-w}\Vert ^{2}+{\mathrm {i} }\Vert {v+{\mathrm {i} }w}\Vert ^{2}-{\mathrm {i} }\Vert {v-{\mathrm {i} }w}\Vert ^{2}\right)}\,}
holds.
Proof
◻
{\displaystyle \Box }