History of Lorentz transformation (edit )
The following general relation connects the speed of light and the relative velocity to hyperbolic and trigonometric functions, where
η
{\displaystyle \eta }
is the rapidity in E:(3b) ,
θ
{\displaystyle \theta }
is equivalent to the w:Gudermannian function
g
d
(
η
)
=
2
arctan
(
e
η
)
−
π
/
2
{\displaystyle {\rm {gd}}(\eta )=2\arctan(e^{\eta })-\pi /2}
, and
ϑ
{\displaystyle \vartheta }
is equivalent to the Lobachevskian w:angle of parallelism
Π
(
η
)
=
2
arctan
(
e
−
η
)
{\displaystyle \Pi (\eta )=2\arctan(e^{-\eta })}
:
v
c
=
tanh
η
=
sin
θ
=
cos
ϑ
{\displaystyle {\frac {v}{c}}=\tanh \eta =\sin \theta =\cos \vartheta }
This relation was first defined by Varićak (1910) .
a) Using
sin
θ
=
v
c
{\displaystyle \sin \theta ={\tfrac {v}{c}}}
one obtains the relations
sec
θ
=
γ
{\displaystyle \sec \theta =\gamma }
and
tan
θ
=
β
γ
{\displaystyle \tan \theta =\beta \gamma }
, and the Lorentz boost takes the form:[ 1]
−
x
0
2
+
x
1
2
+
x
2
2
=
−
x
0
′
2
+
x
1
′
2
+
x
2
′
2
x
0
′
=
x
0
sec
θ
−
x
1
tan
θ
=
x
0
−
x
1
sin
θ
cos
θ
x
1
′
=
−
x
0
tan
θ
+
x
1
sec
θ
=
−
x
0
sin
θ
+
x
1
cos
θ
x
2
′
=
x
2
x
0
=
x
0
′
sec
θ
+
x
1
′
tan
θ
=
x
0
′
+
x
1
′
sin
θ
cos
θ
x
1
=
x
0
′
tan
θ
+
x
1
′
sec
θ
=
x
0
′
sin
θ
+
x
1
′
cos
θ
x
2
=
x
2
′
|
tan
2
θ
−
sec
2
θ
=
−
1
tan
θ
sec
θ
=
sin
θ
1
1
−
sin
2
θ
=
sec
θ
sin
θ
1
−
sin
2
θ
=
tan
θ
{\displaystyle \scriptstyle {\begin{matrix}-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=-x_{0}^{\prime 2}+x_{1}^{\prime 2}+x_{2}^{\prime 2}\\\hline \left.{\begin{aligned}x_{0}^{\prime }&=x_{0}\sec \theta -x_{1}\tan \theta &&={\frac {x_{0}-x_{1}\sin \theta }{\cos \theta }}\\x_{1}^{\prime }&=-x_{0}\tan \theta +x_{1}\sec \theta &&={\frac {-x_{0}\sin \theta +x_{1}}{\cos \theta }}\\x_{2}^{\prime }&=x_{2}\\\\x_{0}&=x_{0}^{\prime }\sec \theta +x_{1}^{\prime }\tan \theta &&={\frac {x_{0}^{\prime }+x_{1}^{\prime }\sin \theta }{\cos \theta }}\\x_{1}&=x_{0}^{\prime }\tan \theta +x_{1}^{\prime }\sec \theta &&={\frac {x_{0}^{\prime }\sin \theta +x_{1}^{\prime }}{\cos \theta }}\\x_{2}&=x_{2}^{\prime }\end{aligned}}\right|{\scriptstyle {\begin{aligned}\tan ^{2}\theta -\sec ^{2}\theta &=-1\\{\frac {\tan \theta }{\sec \theta }}&=\sin \theta \\{\frac {1}{\sqrt {1-\sin ^{2}\theta }}}&=\sec \theta \\{\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}&=\tan \theta \end{aligned}}}\end{matrix}}}
(8a )
This Lorentz transformation was derived by Bianchi (1886) and Darboux (1891/94) while transforming pseudospherical surfaces, and by Scheffers (1899) as a special case of w:contact transformation in the plane (Laguerre geometry). In special relativity, it was first used by Plummer (1910) , by Gruner (1921) while developing w:Loedel diagrams , and by w:Vladimir Karapetoff in the 1920s.
b) Using
cos
ϑ
=
v
c
{\displaystyle \cos \vartheta ={\tfrac {v}{c}}}
one obtains the relations
csc
ϑ
=
γ
{\displaystyle \csc \vartheta =\gamma }
and
cot
ϑ
=
β
γ
{\displaystyle \cot \vartheta =\beta \gamma }
, and the Lorentz boost takes the form:[ 1]
−
x
0
2
+
x
1
2
+
x
2
2
=
−
x
0
′
2
+
x
1
′
2
+
x
2
′
2
x
0
′
=
x
0
csc
ϑ
−
x
1
cot
ϑ
=
x
0
−
x
1
cos
ϑ
sin
ϑ
x
1
′
=
−
x
0
cot
ϑ
+
x
1
csc
ϑ
=
−
x
0
cos
ϑ
+
x
1
sin
ϑ
x
2
′
=
x
2
x
0
=
x
0
′
csc
ϑ
+
x
1
′
cot
ϑ
=
x
0
′
+
x
1
′
cos
ϑ
sin
ϑ
x
1
=
x
0
′
cot
ϑ
+
x
1
′
csc
ϑ
=
x
0
′
cos
ϑ
+
x
1
′
sin
ϑ
x
2
=
x
2
′
|
cot
2
ϑ
−
csc
2
ϑ
=
−
1
cot
ϑ
csc
ϑ
=
cos
ϑ
1
1
−
cos
2
ϑ
=
csc
ϑ
cos
ϑ
1
−
cos
2
ϑ
=
cot
ϑ
{\displaystyle \scriptstyle {\begin{matrix}-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=-x_{0}^{\prime 2}+x_{1}^{\prime 2}+x_{2}^{\prime 2}\\\hline \left.{\begin{aligned}x_{0}^{\prime }&=x_{0}\csc \vartheta -x_{1}\cot \vartheta &&={\frac {x_{0}-x_{1}\cos \vartheta }{\sin \vartheta }}\\x_{1}^{\prime }&=-x_{0}\cot \vartheta +x_{1}\csc \vartheta &&={\frac {-x_{0}\cos \vartheta +x_{1}}{\sin \vartheta }}\\x_{2}^{\prime }&=x_{2}\\\\x_{0}&=x_{0}^{\prime }\csc \vartheta +x_{1}^{\prime }\cot \vartheta &&={\frac {x_{0}^{\prime }+x_{1}^{\prime }\cos \vartheta }{\sin \vartheta }}\\x_{1}&=x_{0}^{\prime }\cot \vartheta +x_{1}^{\prime }\csc \vartheta &&={\frac {x_{0}^{\prime }\cos \vartheta +x_{1}^{\prime }}{\sin \vartheta }}\\x_{2}&=x_{2}^{\prime }\end{aligned}}\right|{\scriptstyle {\begin{aligned}\cot ^{2}\vartheta -\csc ^{2}\vartheta &=-1\\{\frac {\cot \vartheta }{\csc \vartheta }}&=\cos \vartheta \\{\frac {1}{\sqrt {1-\cos ^{2}\vartheta }}}&=\csc \vartheta \\{\frac {\cos \vartheta }{\sqrt {1-\cos ^{2}\vartheta }}}&=\cot \vartheta \end{aligned}}}\end{matrix}}}
(8b )
This Lorentz transformation was derived by Eisenhart (1905) while transforming pseudospherical surfaces. In special relativity it was first used by Gruner (1921) while developing w:Loedel diagrams .
w:Luigi Bianchi (1886) investigated E:Lie's transformation (1880) of pseudospherical surfaces, obtaining the result:[ M 1]
(
1
)
u
+
v
=
2
α
,
u
−
v
=
2
β
;
(
2
)
Ω
(
α
,
β
)
⇒
Ω
(
k
α
,
β
k
)
;
(
3
)
θ
(
u
,
v
)
⇒
θ
(
u
+
v
sin
σ
cos
σ
,
u
sin
σ
+
v
cos
σ
)
=
Θ
σ
(
u
,
v
)
;
Inverse:
(
u
−
v
sin
σ
cos
σ
,
−
u
sin
σ
+
v
cos
σ
)
(
4
)
1
2
(
k
+
1
k
)
=
1
cos
σ
,
1
2
(
k
−
1
k
)
=
sin
σ
cos
σ
{\displaystyle {\begin{aligned}(1)\quad &u+v=2\alpha ,\ u-v=2\beta ;\\(2)\quad &\Omega \left(\alpha ,\beta \right)\Rightarrow \Omega \left(k\alpha ,\ {\frac {\beta }{k}}\right);\\(3)\quad &\theta (u,v)\Rightarrow \theta \left({\frac {u+v\sin \sigma }{\cos \sigma }},\ {\frac {u\sin \sigma +v}{\cos \sigma }}\right)=\Theta _{\sigma }(u,v);\\&{\text{Inverse:}}\left({\frac {u-v\sin \sigma }{\cos \sigma }},\ {\frac {-u\sin \sigma +v}{\cos \sigma }}\right)\\(4)\quad &{\frac {1}{2}}\left(k+{\frac {1}{k}}\right)={\frac {1}{\cos \sigma }},\ {\frac {1}{2}}\left(k-{\frac {1}{k}}\right)={\frac {\sin \sigma }{\cos \sigma }}\end{aligned}}}
.
Transformation (3) and its inverse are equivalent to trigonometric Lorentz boost (
8a ), and becomes Lorentz boost of velocity with
sin
σ
=
v
c
{\displaystyle \sin \sigma ={\tfrac {v}{c}}}
.
Similar to Bianchi (1886) , w:Gaston Darboux (1891/94) showed that the E:Lie's transformation (1880) gives rise to the following relations:[ M 2]
(
1
)
u
+
v
=
2
α
,
u
−
v
=
2
β
;
(
2
)
ω
=
φ
(
α
,
β
)
⇒
ω
=
φ
(
α
m
,
β
m
)
(
3
)
ω
=
ψ
(
u
,
v
)
⇒
ω
=
ψ
(
u
+
v
sin
h
cos
h
,
v
+
u
sin
h
cos
h
)
{\displaystyle {\begin{aligned}(1)\quad &u+v=2\alpha ,\ u-v=2\beta ;\\(2)\quad &\omega =\varphi \left(\alpha ,\beta \right)\Rightarrow \omega =\varphi \left(\alpha m,\ {\frac {\beta }{m}}\right)\\(3)\quad &\omega =\psi (u,v)\Rightarrow \omega =\psi \left({\frac {u+v\sin h}{\cos h}},\ {\frac {v+u\sin h}{\cos h}}\right)\end{aligned}}}
.
Equations (1) together with transformation (2) gives Lorentz boost
E:(9a) in terms of null coordinates. Transformation (3) is equivalent to trigonometric Lorentz boost (
8a ), and becomes Lorentz boost
E:(4a) with
sin
h
=
v
c
{\displaystyle \sin h={\tfrac {v}{c}}}
.
w:Georg Scheffers (1899) synthetically determined all finite w:contact transformations preserving circles in the plane, consisting of dilatations, inversions, and the following one preserving circles and lines (compare with Laguerre inversion by E:Laguerre (1882) and Darboux (1887) ):[ M 3]
σ
′
2
−
ρ
′
2
=
σ
2
−
ρ
2
ρ
′
=
ρ
cos
ω
+
σ
tan
ω
,
σ
′
=
ρ
tan
ω
+
σ
cos
ω
{\displaystyle {\begin{matrix}\sigma ^{\prime 2}-\rho ^{\prime 2}=\sigma ^{2}-\rho ^{2}\\\hline \rho '={\frac {\rho }{\cos \omega }}+\sigma \tan \omega ,\quad \sigma '=\rho \tan \omega +{\frac {\sigma }{\cos \omega }}\end{matrix}}}
This is equivalent to Lorentz transformation (
8a ) by the identity
sec
ω
=
1
cos
ω
{\displaystyle \sec \omega ={\tfrac {1}{\cos \omega }}}
.
w:Luther Pfahler Eisenhart (1905) followed Bianchi (1886, 1894) and Darboux (1891/94) by writing the E:Lie's transformation (1880) of pseudospherical surfaces:[ M 4]
(
1
)
α
=
u
+
v
2
,
β
=
u
−
v
2
(
2
)
ω
(
α
,
β
)
⇒
ω
(
m
α
,
β
m
)
(
3
)
ω
(
u
,
v
)
⇒
ω
(
α
+
β
,
α
−
β
)
⇒
ω
(
α
m
+
β
m
,
α
m
−
β
m
)
⇒
ω
[
(
m
2
+
1
)
u
+
(
m
2
−
1
)
v
2
m
,
(
m
2
−
1
)
u
+
(
m
2
+
1
)
v
2
m
]
(
4
)
m
=
1
−
cos
σ
sin
σ
⇒
ω
(
u
−
v
cos
σ
sin
σ
,
v
−
u
cos
σ
sin
σ
)
{\displaystyle {\begin{aligned}(1)\quad &\alpha ={\frac {u+v}{2}},\ \beta ={\frac {u-v}{2}}\\(2)\quad &\omega \left(\alpha ,\beta \right)\Rightarrow \omega \left(m\alpha ,\ {\frac {\beta }{m}}\right)\\(3)\quad &\omega (u,v)\Rightarrow \omega (\alpha +\beta ,\ \alpha -\beta )\Rightarrow \omega \left(\alpha m+{\frac {\beta }{m}},\ \alpha m-{\frac {\beta }{m}}\right)\\&\Rightarrow \omega \left[{\frac {\left(m^{2}+1\right)u+\left(m^{2}-1\right)v}{2m}},\ {\frac {\left(m^{2}-1\right)u+\left(m^{2}+1\right)v}{2m}}\right]\\(4)\quad &m={\frac {1-\cos \sigma }{\sin \sigma }}\Rightarrow \omega \left({\frac {u-v\cos \sigma }{\sin \sigma }},\ {\frac {v-u\cos \sigma }{\sin \sigma }}\right)\end{aligned}}}
.
Equations (1) together with transformation (2) gives Lorentz boost
E:(9a) in terms of null coordinates. Transformation (3) is equivalent to Lorentz boost
E:(9b) in terms of Bondi's
k factor, as well as Lorentz boost
E:(6f) with
m
=
α
2
{\displaystyle m=\alpha ^{2}}
. Transformation (4) is equivalent to trigonometric Lorentz boost (
8b ), and becomes Lorentz boost
E:(4b) with
cos
σ
=
v
c
{\displaystyle \cos \sigma ={\tfrac {v}{c}}}
. Eisenhart's angle σ corresponds to ϑ of Lorentz boost
E:(9d) .
Relativistic velocity in terms of trigonometric functions and its relation to hyperbolic functions was demonstrated by w:Vladimir Varićak in several papers starting from 1910, who represented the equations of special relativity on the basis of w:hyperbolic geometry in terms of Weierstrass coordinates. For instance, he showed the relation of rapidity to the w:Gudermannian function and the w:angle of parallelism :[ R 1]
v
c
=
th
u
=
tg
ψ
=
sin
gd
(
u
)
=
cos
Π
(
u
)
{\displaystyle {\frac {v}{c}}=\operatorname {th} u=\operatorname {tg} \psi =\sin \operatorname {gd} (u)=\cos \Pi (u)}
This is the foundation of Lorentz transformation (
8a ) and (
8b ).
w:Henry Crozier Keating Plummer (1910) defined the following relations[ R 2]
τ
=
t
sec
β
−
x
tan
β
/
U
ξ
=
x
sec
β
−
U
t
tan
β
η
=
y
,
ζ
=
z
,
sin
β
=
v
/
U
{\displaystyle {\begin{matrix}\tau =t\sec \beta -x\tan \beta /U\\\xi =x\sec \beta -Ut\tan \beta \\\eta =y,\ \zeta =z,\\\hline \sin \beta =v/U\end{matrix}}}
This is equivalent to Lorentz transformation (
8a ).
In order to simplify the graphical representation of Minkowski space, w:Paul Gruner (1921) (with the aid of Josef Sauter) developed what is now called w:Loedel diagrams , using the following relations:[ R 3]
v
=
α
⋅
c
;
β
=
1
1
−
α
2
sin
φ
=
α
;
β
=
1
cos
φ
;
α
β
=
tan
φ
x
′
=
x
cos
φ
−
t
⋅
tan
φ
,
t
′
=
t
cos
φ
−
x
⋅
tan
φ
{\displaystyle {\begin{matrix}v=\alpha \cdot c;\quad \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}}\\\sin \varphi =\alpha ;\quad \beta ={\frac {1}{\cos \varphi }};\quad \alpha \beta =\tan \varphi \\\hline x'={\frac {x}{\cos \varphi }}-t\cdot \tan \varphi ,\quad t'={\frac {t}{\cos \varphi }}-x\cdot \tan \varphi \end{matrix}}}
This is equivalent to Lorentz transformation (
8a ) by the identity
sec
φ
=
1
cos
φ
{\displaystyle \sec \varphi ={\tfrac {1}{\cos \varphi }}}
In another paper Gruner used the alternative relations:[ R 4]
α
=
v
c
;
β
=
1
1
−
α
2
;
cos
θ
=
α
=
v
c
;
sin
θ
=
1
β
;
cot
θ
=
α
⋅
β
x
′
=
x
sin
θ
−
t
⋅
cot
θ
,
t
′
=
t
sin
θ
−
x
⋅
cot
θ
{\displaystyle {\begin{matrix}\alpha ={\frac {v}{c}};\ \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}};\\\cos \theta =\alpha ={\frac {v}{c}};\ \sin \theta ={\frac {1}{\beta }};\ \cot \theta =\alpha \cdot \beta \\\hline x'={\frac {x}{\sin \theta }}-t\cdot \cot \theta ,\quad t'={\frac {t}{\sin \theta }}-x\cdot \cot \theta \end{matrix}}}
This is equivalent to Lorentz Lorentz boost (
8b ) by the identity
csc
θ
=
1
sin
θ
{\displaystyle \csc \theta ={\tfrac {1}{\sin \theta }}}
.
↑ Bianchi (1886), eq. 1 can be found on p. 226, eq. (2) on p. 240, eq. (3) on pp. 240–241, and for eq. (4) see the footnote on p. 240.
↑ Darboux (1891/94), pp. 381–382
↑ Scheffers (1899), p. 158
↑ Eisenhart (1905), p. 126
Bianchi, L. (1886), Lezioni di geometria differenziale , Pisa: Nistri
Darboux, G. (1894) [1891], Leçons sur la théorie générale des surfaces. Troisième partie , Paris: Gauthier-Villars This third part of his lectures was initially published in three steps: première fascicule (1890), deuxième fascicule (1891), and troisième fascicule (1895). The discussion of the Lie transform appears in the deuxième fascicule published in 1891.
Eisenhart, L. P. (1905), "Surfaces with the same Spherical Representation of their Lines of Curvature as Pseudospherical Surfaces", American Journal of Mathematics , 27 (2): 113–172, doi :10.2307/2369977
Scheffers, G. (1899), "Synthetische Bestimmung aller Berührungstransformationen der Kreise in der Ebene" , Leipziger Math.-Phys. Berichte , 51 : 145–160
↑ Varićak (1910), p. 93
↑ Plummer (1910), p. 256
↑ Gruner (1921a)
↑ Gruner (1921b)
Gruner, P. (1921b), "Eine elementare geometrische Darstellung der Transformationsformeln der speziellen Relativitätstheorie", Physikalische Zeitschrift , 22 : 384–385
Plummer, H.C.K. (1910), "On the Theory of Aberration and the Principle of Relativity", Monthly Notices of the Royal Astronomical Society , 40 : 252–266, Bibcode :1910MNRAS..70..252P
Varićak, V. (1910), "Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie", Physikalische Zeitschrift , 11 : 93–6
↑ 1.0 1.1 Majerník (1986), 536–538
Majerník, V. (1986), "Representation of relativistic quantities by trigonometric functions", American Journal of Physics , 54 (6): 536–538, doi :10.1119/1.14557