History of Topics in Special Relativity/Lorentz transformation (velocity)
History of Topics in Special Relativity: History of Lorentz transformation ( ) | |
---|---|
Lorentz transformation via velocity[edit | edit source]
Boosts[edit | edit source]
In the w:theory of relativity, Lorentz transformations exhibit the symmetry of w:Minkowski spacetime by using a constant c as the w:speed of light, and a parameter v as the relative w:velocity between two w:inertial reference frames. The corresponding formulas are identical to E:Lorentz transformations via hyperbolic functions introduced long before relativity was developed. In particular, the hyperbolic angle can be interpreted as the velocity related w:rapidity , so that is the w:Lorentz factor, the w:proper velocity, the velocity of another object, the w:velocity-addition formula, thus transformation E:(3b) becomes:
-
(
)
Or in four dimensions and by setting and adding an unchanged z the familiar form follows
-
(
)
Analogous transformations have been introduced by Voigt (1887) in terms of an incompessible medium, and by Lorentz (1892, 1895) who analyzed w:Maxwell's equations, they were completed by Larmor (1897, 1900) and Lorentz (1899, 1904), and brought into their modern form by Poincaré (1905) who gave the transformation the name of Lorentz.[1] Eventually, Einstein (1905) showed in his development of w:special relativity that the transformations follow from the w:principle of relativity and constant light speed alone by modifying the traditional concepts of space and time, without requiring a mechanical aether in contradistinction to Lorentz and Poincaré.[2] Minkowski (1907–1908) used them to argue that space and time are inseparably connected as w:spacetime. Minkowski (1907–1908), Frank (1909) and Varićak (1910) showed the relation to imaginary and hyperbolic functions. Important contributions to the mathematical understanding of the Lorentz transformation were also made by other authors such as Herglotz (1909/10), Ignatowski (1910), Noether (1910) and Klein (1910), Borel (1913–14).
Velocity addition and aberration[edit | edit source]
In exact analogy to Beltrami coordinates in equation E:(3e), one can substitute in (4a), producing the Lorentz transformation of velocities (or w:velocity addition formula) :
-
(
)
or using trigonometric and hyperbolic identities as in equation E:(3f), it becomes the hyperbolic law of cosines:[3][R 1][4]
-
(
)
and by further setting u=u′=c one gets the well known E:Kepler formulas (3g), which express the relativistic w:aberration of light:[5]
-
(
)
Formulas (4c, 4d) were given by Einstein (1905) and Poincaré (1905/06), while the relations to the spherical and hyperbolic law of cosines were given by Sommerfeld (1909) and Varićak (1910). The aberration formula for cos(α) was given by Einstein (1905).[R 2][6]
Vectorial Lorentz transformation[edit | edit source]
Also Lorentz boosts for arbitrary directions in line with E:general Lorentz transformation (1a) can be given as:[7]
or in vector notation
-
(
)
The corresponding vectorial velocity addition formula in line with E:general Lorentz transformation (1b) is given by
-
(
)
Such transformations were formulated by Ignatowski (1910), Herglotz (1911) and others.
Historical notation[edit | edit source]
Voigt (1887)[edit | edit source]
w:Woldemar Voigt (1887)[R 3] developed a transformation in connection with the w:Doppler effect and an incompressible medium, being in modern notation:[8][9]
If the right-hand sides of his equations are multiplied by γ they are the modern Lorentz transformation (4b). In Voigt's theory the speed of light is invariant, but his transformations mix up a relativistic boost together with a rescaling of space-time. Optical phenomena in free space are scale, conformal (using the factor λ discussed above), and Lorentz invariant, so the combination is invariant too.[9] For instance, Lorentz transformations can be extended by using :[R 4]
- .
l=1/γ gives the Voigt transformation, l=1 the Lorentz transformation. But scale transformations are not a symmetry of all the laws of nature, only of electromagnetism, so these transformations cannot be used to formulate a w:principle of relativity in general. It was demonstrated by Poincaré and Einstein that one has to set l=1 in order to make the above transformation symmetric and to form a group as required by the relativity principle, therefore the Lorentz transformation is the only viable choice.
Voigt sent his 1887 paper to Lorentz in 1908,[10] and that was acknowledged in 1909:
“ | In a paper "Über das Doppler'sche Princip", published in 1887 (Gött. Nachrichten, p. 41) and which to my regret has escaped my notice all these years, Voigt has applied to equations of the form (7) (§ 3 of this book) [namely ] a transformation equivalent to the formulae (287) and (288) [namely ]. The idea of the transformations used above (and in § 44) might therefore have been borrowed from Voigt and the proof that it does not alter the form of the equations for the free ether is contained in his paper.[R 5] | ” |
Also w:Hermann Minkowski said in 1908 that the transformations which play the main role in the principle of relativity were first examined by Voigt in 1887. Voigt responded in the same paper by saying that his theory was based on an elastic theory of light, not an electromagnetic one. However, he concluded that some results were actually the same.[R 6]
Heaviside (1888), Thomson (1889), Searle (1896)[edit | edit source]
In 1888, w:Oliver Heaviside[R 7] investigated the properties of charges in motion according to Maxwell's electrodynamics. He calculated, among other things, anisotropies in the electric field of moving bodies represented by this formula:[11]
- .
Consequently, w:Joseph John Thomson (1889)[R 8] found a way to substantially simplify calculations concerning moving charges by using the following mathematical transformation (like other authors such as Lorentz or Larmor, also Thomson implicitly used the w:Galilean transformation z-vt in his equation[12]):
Thereby, w:inhomogeneous electromagnetic wave equations are transformed into a w:Poisson equation.[12] Eventually, w:George Frederick Charles Searle[R 9] noted in (1896) that Heaviside's expression leads to a deformation of electric fields which he called "Heaviside-Ellipsoid" of w:axial ratio
Lorentz (1892, 1895)[edit | edit source]
In order to explain the w:aberration of light and the result of the w:Fizeau experiment in accordance with w:Maxwell's equations, Lorentz in 1892 developed a model ("w:Lorentz ether theory") in which the aether is completely motionless, and the speed of light in the aether is constant in all directions. In order to calculate the optics of moving bodies, Lorentz introduced the following quantities to transform from the aether system into a moving system (it's unknown whether he was influenced by Voigt, Heaviside, and Thomson)[R 10][13]
where x* is the w:Galilean transformation x-vt. Except the additional γ in the time transformation, this is the complete Lorentz transformation (4b).[13] While t is the "true" time for observers resting in the aether, t′ is an auxiliary variable only for calculating processes for moving systems. It is also important that Lorentz and later also Larmor formulated this transformation in two steps. At first an implicit Galilean transformation, and later the expansion into the "fictitious" electromagnetic system with the aid of the Lorentz transformation. In order to explain the negative result of the w:Michelson–Morley experiment, he (1892b)[R 11] introduced the additional hypothesis that also intermolecular forces are affected in a similar way and introduced w:length contraction in his theory (without proof as he admitted). The same hypothesis was already made by w:George FitzGerald in 1889 based on Heaviside's work. While length contraction was a real physical effect for Lorentz, he considered the time transformation only as a heuristic working hypothesis and a mathematical stipulation.
In 1895, Lorentz further elaborated on his theory and introduced the "theorem of corresponding states". This theorem states that a moving observer (relative to the ether) in his "fictitious" field makes the same observations as a resting observers in his "real" field for velocities to first order in v/c. Lorentz showed that the dimensions of electrostatic systems in the ether and a moving frame are connected by this transformation:[R 12]
For solving optical problems Lorentz used the following transformation, in which the modified time variable was called "local time" (German: Ortszeit) by him:[R 13]
With this concept Lorentz could explain the w:Doppler effect, the w:aberration of light, and the w:Fizeau experiment.[14]
Larmor (1897, 1900)[edit | edit source]
In 1897, Larmor extended the work of Lorentz and derived the following transformation[R 14]
Larmor noted that if it is assumed that the constitution of molecules is electrical then the FitzGerald–Lorentz contraction is a consequence of this transformation, explaining the w:Michelson–Morley experiment. It's notable that Larmor was the first who recognized that some sort of w:time dilation is a consequence of this transformation as well, because "individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio 1/γ".[15][16] Larmor wrote his electrodynamical equations and transformations neglecting terms of higher order than (v/c)2 – when his 1897 paper was reprinted in 1929, Larmor added the following comment in which he described how they can be made valid to all orders of v/c:[R 15]
“ | Nothing need be neglected: the transformation is exact if v/c2 is replaced by εv/c2 in the equations and also in the change following from t to t′, as is worked out in Aether and Matter (1900), p. 168, and as Lorentz found it to be in 1904, thereby stimulating the modern schemes of intrinsic relational relativity. | ” |
In line with that comment, in his book Aether and Matter published in 1900, Larmor used a modified local time t″=t′-εvx′/c2 instead of the 1897 expression t′=t-vx/c2 by replacing v/c2 with εv/c2, so that t″ is now identical to the one given by Lorentz in 1892, which he combined with a Galilean transformation for the x′, y′, z′, t′ coordinates:[R 16]
Larmor knew that the Michelson–Morley experiment was accurate enough to detect an effect of motion depending on the factor (v/c)2, and so he sought the transformations which were "accurate to second order" (as he put it). Thus he wrote the final transformations (where x′=x-vt and t″ as given above) as:[R 17]
by which he arrived at the complete Lorentz transformation (4b). Larmor showed that Maxwell's equations were invariant under this two-step transformation, "to second order in v/c" – it was later shown by Lorentz (1904) and Poincaré (1905) that they are indeed invariant under this transformation to all orders in v/c.
Larmor gave credit to Lorentz in two papers published in 1904, in which he used the term "Lorentz transformation" for Lorentz's first order transformations of coordinates and field configurations:
“ | p. 583: [..] Lorentz's transformation for passing from the field of activity of a stationary electrodynamic material system to that of one moving with uniform velocity of translation through the aether. p. 585: [..] the Lorentz transformation has shown us what is not so immediately obvious [..][R 18] p. 622: [..] the transformation first developed by Lorentz: namely, each point in space is to have its own origin from which time is measured, its "local time" in Lorentz's phraseology, and then the values of the electric and magnetic vectors [..] at all points in the aether between the molecules in the system at rest, are the same as those of the vectors [..] at the corresponding points in the convected system at the same local times.[R 19] |
” |
Lorentz (1899, 1904)[edit | edit source]
Also Lorentz extended his theorem of corresponding states in 1899. First he wrote a transformation equivalent to the one from 1892 (again, x* must be replaced by x-vt):[R 20]
Then he introduced a factor ε of which he said he has no means of determining it, and modified his transformation as follows (where the above value of t′ has to be inserted):[R 21]
This is equivalent to the complete Lorentz transformation (4b) when solved for x″ and t″ and with ε=1. Like Larmor, Lorentz noticed in 1899[R 22] also some sort of time dilation effect in relation to the frequency of oscillating electrons "that in S the time of vibrations be kε times as great as in S0", where S0 is the aether frame.[17]
In 1904 he rewrote the equations in the following form by setting l=1/ε (again, x* must be replaced by x-vt):[R 23]
Under the assumption that l=1 when v=0, he demonstrated that l=1 must be the case at all velocities, therefore length contraction can only arise in the line of motion. So by setting the factor l to unity, Lorentz's transformations now assumed the same form as Larmor's and are now completed. Unlike Larmor, who restricted himself to show the covariance of Maxwell's equations to second order, Lorentz tried to widen its covariance to all orders in v/c. He also derived the correct formulas for the velocity dependence of w:electromagnetic mass, and concluded that the transformation formulas must apply to all forces of nature, not only electrical ones.[R 24] However, he didn't achieve full covariance of the transformation equations for charge density and velocity.[18] When the 1904 paper was reprinted in 1913, Lorentz therefore added the following remark:[19]
“ | One will notice that in this work the transformation equations of Einstein’s Relativity Theory have not quite been attained. [..] On this circumstance depends the clumsiness of many of the further considerations in this work. | ” |
Lorentz's 1904 transformation was cited and used by w:Alfred Bucherer in July 1904:[R 25]
or by w:Wilhelm Wien in July 1904:[R 26]
or by w:Emil Cohn in November 1904 (setting the speed of light to unity):[R 27]
or by w:Richard Gans in February 1905:[R 28]
Poincaré (1900, 1905)[edit | edit source]
Local time[edit | edit source]
Neither Lorentz or Larmor gave a clear physical interpretation of the origin of local time. However, w:Henri Poincaré in 1900 commented on the origin of Lorentz's "wonderful invention" of local time.[20] He remarked that it arose when clocks in a moving reference frame are synchronised by exchanging signals which are assumed to travel with the same speed in both directions, which lead to what is nowadays called w:relativity of simultaneity, although Poincaré's calculation does not involve length contraction or time dilation.[R 29] In order to synchronise the clocks here on Earth (the x*, t* frame) a light signal from one clock (at the origin) is sent to another (at x*), and is sent back. It's supposed that the Earth is moving with speed v in the x-direction (= x*-direction) in some rest system (x, t) (i.e. the w:luminiferous aether system for Lorentz and Larmor). The time of flight outwards is
and the time of flight back is
- .
The elapsed time on the clock when the signal is returned is δta+δtb and the time t*=(δta+δtb)/2 is ascribed to the moment when the light signal reached the distant clock. In the rest frame the time t=δta is ascribed to that same instant. Some algebra gives the relation between the different time coordinates ascribed to the moment of reflection. Thus
identical to Lorentz (1892). By dropping the factor γ2 under the assumption that , Poincaré gave the result t*=t-vx*/c2, which is the form used by Lorentz in 1895.
Similar physical interpretations of local time were later given by w:Emil Cohn (1904)[R 30] and w:Max Abraham (1905).[R 31]
Lorentz transformation[edit | edit source]
On June 5, 1905 (published June 9) Poincaré formulated transformation equations which are algebraically equivalent to those of Larmor and Lorentz and gave them the modern form (4b):[R 32]
- .
Apparently Poincaré was unaware of Larmor's contributions, because he only mentioned Lorentz and therefore used for the first time the name "Lorentz transformation".[21][22] Poincaré set the speed of light to unity, pointed out the group characteristics of the transformation by setting l=1, and modified/corrected Lorentz's derivation of the equations of electrodynamics in some details in order to fully satisfy the principle of relativity, i.e. making them fully Lorentz covariant.[23]
In July 1905 (published in January 1906)[R 33] Poincaré showed in detail how the transformations and electrodynamic equations are a consequence of the w:principle of least action; he demonstrated in more detail the group characteristics of the transformation, which he called w:Lorentz group, and he showed that the combination x2+y2+z2-t2 is invariant. He noticed that the Lorentz transformation is merely a rotation in four-dimensional space about the origin by introducing as a fourth imaginary coordinate, and he used an early form of w:four-vectors. He also formulated the velocity addition formula (4c), which he had already derived in unpublished letters to Lorentz from May 1905:[R 34]
- .
Einstein (1905) – Special relativity[edit | edit source]
On June 30, 1905 (published September 1905) Einstein published what is now called w:special relativity and gave a new derivation of the transformation, which was based only on the principle on relativity and the principle of the constancy of the speed of light. While Lorentz considered "local time" to be a mathematical stipulation device for explaining the Michelson-Morley experiment, Einstein showed that the coordinates given by the Lorentz transformation were in fact the inertial coordinates of relatively moving frames of reference. For quantities of first order in v/c this was also done by Poincaré in 1900, while Einstein derived the complete transformation by this method. Unlike Lorentz and Poincaré who still distinguished between real time in the aether and apparent time for moving observers, Einstein showed that the transformations concern the nature of space and time.[24][25][26]
The notation for this transformation is equivalent to Poincaré's of 1905 and (4b), except that Einstein didn't set the speed of light to unity:[R 35]
Einstein also defined the velocity addition formula (4c, 4d):[R 36]
and the light aberration formula (4e):[R 37]
Minkowski (1907–1908) – Spacetime[edit | edit source]
The work on the principle of relativity by Lorentz, Einstein, Planck, together with Poincaré's four-dimensional approach, were further elaborated and combined with the w:hyperboloid model by w:Hermann Minkowski in 1907 and 1908.[R 38][R 39] Minkowski particularly reformulated electrodynamics in a four-dimensional way (w:Minkowski spacetime).[27] For instance, he wrote x, y, z, it in the form x1, x2, x3, x4. By defining ψ as the angle of rotation around the z-axis, the Lorentz transformation assumes a form (with c=1):[R 40]
Even though Minkowski used the imaginary number iψ, he for once[R 40] directly used the w:tangens hyperbolicus in the equation for velocity
- with .
Minkowski's expression can also by written as ψ=atanh(q) and was later called w:rapidity. He also wrote the Lorentz transformation in matrix form:[R 41]
As a graphical representation of the Lorentz transformation he introduced the w:Minkowski diagram, which became a standard tool in textbooks and research articles on relativity:[R 42]
Frank (1909) – Hyperbolic functions[edit | edit source]
Hyperbolic functions were used by w:Philipp Frank (1909), who derived the Lorentz transformation using ψ as rapidity in agreement with (4b):[R 43]
Sommerfeld (1909) – Spherical trigonometry[edit | edit source]
Using an imaginary rapidity such as Minkowski, w:Arnold Sommerfeld (1909) formulated a transformation equivalent to Lorentz boost (4b), and the relativistc velocity addition (4c) in terms of trigonometric functions and the w:spherical law of cosines:[R 44]
Herglotz (1909/10) – Möbius transformation[edit | edit source]
Following E:Klein (1889–1897) as well as E:Fricke & Klein (1897) concerning the Cayley absolute, hyperbolic motion and its transformation, w:Gustav Herglotz (1909/10) classified the one-parameter Lorentz transformations as loxodromic, hyperbolic, parabolic and elliptic. The general case (on the left) equivalent to Lorentz-Möbius transformation E:(6a) and the hyperbolic case (on the right) equivalent to Lorentz transformation E:(3d) or squeeze mapping E:(9d) are as follows:[R 45]
Varićak (1910) – Hyperbolic functions[edit | edit source]
Following Sommerfeld (1909), hyperbolic functions were used by w:Vladimir Varićak in several papers starting from 1910, who represented the equations of special relativity on the basis of w:hyperbolic geometry in terms of Weierstrass coordinates. For instance, by setting l=ct and v/c=tanh(u) with u as rapidity he wrote the Lorentz transformation in agreement with (4b):[R 46]
and showed the relation of rapidity to the w:Gudermannian function and the w:angle of parallelism:[R 46]
He also related the velocity addition to the w:hyperbolic law of cosines:[R 47]
Subsequently, other authors such as w:E. T. Whittaker (1910) or w:Alfred Robb (1911, who coined the name rapidity) used similar expressions, which are still used in modern textbooks.[28]
Plummer (1910) – Trigonometric Lorentz boosts[edit | edit source]
w:Henry Crozier Keating Plummer (1910) defined the following relations[R 48]
Ignatowski (1910)[edit | edit source]
While earlier derivations and formulations of the Lorentz transformation relied from the outset on optics, electrodynamics, or the invariance of the speed of light, w:Vladimir Ignatowski (1910) showed that it is possible to use the principle of relativity (and related group theoretical principles) alone, in order to derive the following transformation between two inertial frames:[R 49][R 50]
The variable n can be seen as a space-time constant whose value has to be determined by experiment or taken from a known physical law such as electrodynamics. For that purpose, Ignatowski used the above-mentioned Heaviside ellipsoid representing a contraction of electrostatic fields by x/γ in the direction of motion. It can be seen that this is only consistent with Ignatowski's transformation when n=1/c2, resulting in p=γ and the Lorentz transformation (4b). With n=0, no length changes arise and the Galilean transformation follows. Ignatowski's method was further developed and improved by w:Philipp Frank and w:Hermann Rothe (1911, 1912),[R 51] with various authors developing similar methods in subsequent years.[29]
Noether (1910), Klein (1910) – Quaternions[edit | edit source]
w:Felix Klein (1908) described E:Cayley's (1854) 4D quaternion multiplications as "Drehstreckungen" (orthogonal substitutions in terms of rotations leaving invariant a quadratic form up to a factor), and pointed out that the modern principle of relativity as provided by Minkowski is essentially only the consequent application of such Drehstreckungen, even though he didn't provide details.[R 52]
In an appendix to Klein's and Sommerfeld's "Theory of the top" (1910), w:Fritz Noether showed how to formulate hyperbolic rotations using biquaternions with , which he also related to the speed of light by setting ω2=-c2. He concluded that this is the principal ingredient for a rational representation of the group of Lorentz transformations:[R 53]
Besides citing quaternion related standard works such as Cayley (1854), Noether referred to the entries in Klein's encyclopedia by w:Eduard Study (1899) and the French version by w:Élie Cartan (1908).[30] Cartan's version contains a description of Study's w:dual numbers, Clifford's biquaternions (including the choice for hyperbolic geometry), and Clifford algebra, with references to Stephanos (1883), Buchheim (1884/85), Vahlen (1901/02) and others.
Citing Noether, Klein himself published in August 1910 the following quaternion substitutions forming the group of Lorentz transformations:[R 54]
or in March 1911[R 55]
Conway (1911), Silberstein (1911) – Quaternions[edit | edit source]
w:Arthur W. Conway in February 1911 explicitly formulated quaternionic Lorentz transformations of various electromagnetic quantities in terms of velocity λ:[R 56]
Also w:Ludwik Silberstein in November 1911[R 57] as well as in 1914,[31] formulated the Lorentz transformation in terms of velocity v:
Silberstein cites E:Cayley (1854, 1855) and Study's encyclopedia entry (in the extended French version of Cartan in 1908), as well as the appendix of Klein's and Sommerfeld's book.
Ignatowski (1910/11), Herglotz (1911), and others – Vector transformation[edit | edit source]
w:Vladimir Ignatowski (1910, published 1911) defined the vectorial velocity addition (4g) as well as general Lorentz boost (4f) as[R 58]
An equivalent transformation was given by w:Gustav Herglotz (1911)[R 59] using v=(vx, vy, vz) and r=(x, y, z):
Or by w:Ludwik Silberstein (1911 on the left, 1914 on the right):[R 60]
w:Erwin Madelung (1922) provided the matrix form[32]
These formulas were called "general Lorentz transformation without rotation" by w:Christian Møller (1952),[33] who in addition gave an even more general Lorentz transformation in which the Cartesian axes have different orientations, using a rotation operator . In this case, v′=(v′x, v′y, v′z) is not equal to -v=(-vx, -vy, -vz), but the relation holds instead, with the result
Borel (1913–14) – Cayley–Hermite parameter[edit | edit source]
w:Émile Borel (1913) started by demonstrating Euclidean motions using Euler-Rodrigues parameter in three dimensions, and E:Cayley's (1846) parameter in four dimensions. Then he demonstrated the connection to indefinite quadratic forms expressing hyperbolic motions and Lorentz transformations. In three dimensions:[R 61]
In four dimensions:[R 62]
Gruner (1921) – Trigonometric Lorentz boosts[edit | edit source]
In order to simplify the graphical representation of Minkowski space, w:Paul Gruner (1921) (with the aid of Josef Sauter) developed what is now called w:Loedel diagrams, using the following relations:[R 63]
In another paper Gruner used the alternative relations:[R 64]
References[edit | edit source]
Historical relativity sources[edit | edit source]
- ↑ Varićak (1912), p. 108
- ↑ Plummer (1910), pp. 258-259: After deriving the relativistic expressions for the aberration angles φ' and φ, Plummer remarked on p. 259: Another geometrical representation is obtained by assimilating φ' to the eccentric and φ to the true anomaly in an ellipse whose eccentricity is v/U = sin β.
- ↑ Voigt (1887), p. 45
- ↑ Lorentz (1915/16), p. 197
- ↑ Lorentz (1915/16), p. 198
- ↑ Bucherer (1908), p. 762
- ↑ Heaviside (1888), p. 324
- ↑ Thomson (1889), p. 12
- ↑ Searle (1886), p. 333
- ↑ Lorentz (1892a), p. 141
- ↑ Lorentz (1892b), p. 141
- ↑ Lorentz (1895), p. 37
- ↑ Lorentz (1895), p. 49 for local time and p. 56 for spatial coordinates.
- ↑ Larmor (1897), p. 229
- ↑ Larmor (1897/1929), p. 39
- ↑ Larmor (1900), p. 168
- ↑ Larmor (1900), p. 174
- ↑ Larmor (1904a), p. 583, 585
- ↑ Larmor (1904b), p. 622
- ↑ Lorentz (1899), p. 429
- ↑ Lorentz (1899), p. 439
- ↑ Lorentz (1899), p. 442
- ↑ Lorentz (1904), p. 812
- ↑ Lorentz (1904), p. 826
- ↑ Bucherer, p. 129; Definition of s on p. 32
- ↑ Wien (1904), p. 394
- ↑ Cohn (1904a), pp. 1296-1297
- ↑ Gans (1905), p. 169
- ↑ Poincaré (1900), pp. 272–273
- ↑ Cohn (1904b), p. 1408
- ↑ Abraham (1905), § 42
- ↑ Poincaré (1905), p. 1505
- ↑ Poincaré (1905/06), pp. 129ff
- ↑ Poincaré (1905/06), p. 144
- ↑ Einstein (1905), p. 902
- ↑ Einstein (1905), § 5 and § 9
- ↑ Einstein (1905), § 7
- ↑ Minkowski (1907/15), pp. 927ff
- ↑ Minkowski (1907/08), pp. 53ff
- ↑ 40.0 40.1 Minkowski (1907/08), p. 59
- ↑ Minkowski (1907/08), pp. 65–66, 81–82
- ↑ Minkowski (1908/09), p. 77
- ↑ Frank (1909), pp. 423-425
- ↑ Sommerfeld (1909), p. 826ff.
- ↑ Herglotz (1909/10), pp. 404-408
- ↑ 46.0 46.1 Varićak (1910), p. 93
- ↑ Varićak (1910), p. 94
- ↑ Plummer (1910), p. 256
- ↑ Ignatowski (1910), pp. 973–974
- ↑ Ignatowski (1910/11ab)
- ↑ Frank & Rothe (1911), pp. 825ff; (1912), p. 750ff.
- ↑ Klein (1908), p. 165
- ↑ Noether (1910), pp. 939–943
- ↑ Klein (1910), p. 300
- ↑ Klein (1911), pp. 602ff.
- ↑ Conway (1911), p. 8
- ↑ Silberstein (1911/12), p. 793
- ↑ Ignatowski (1910/11a), p. 23; (1910/11b), p. 22
- ↑ Herglotz (1911), p. 497
- ↑ Silberstein (1911/12), p. 792; (1914), p. 123
- ↑ Borel (1913/14), p. 39
- ↑ Borel (1913/14), p. 41
- ↑ Gruner (1921a),
- ↑ Gruner (1921b)
- Abraham, M. (1905). "§ 42. Die Lichtzeit in einem gleichförmig bewegten System". Theorie der Elektrizität: Elektromagnetische Theorie der Strahlung. Leipzig: Teubner.
- § 42. Die Lichtzeit in einem gleichförmig bewegten System on German Wikisource
- Borel, Émile (1914). Introduction Geometrique à quelques Théories Physiques. Paris. http://ebooks.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=04710001.
- Bucherer, A. H. (1908), "Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie.", Physikalische Zeitschrift, 9 (22): 758–762. For Minkowski's and Voigt's statements see p. 762.
- Messungen an Becquerelstrahlen on German Wikisource
- Measurements of Becquerel rays on English Wikisource
- Cohn, Emil (1904a), "Zur Elektrodynamik bewegter Systeme I", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1904/2 (40): 1294–1303
- On the Electrodynamics of Moving Systems I on English Wikisource
- Cohn, Emil (1904b), "Zur Elektrodynamik bewegter Systeme II", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1904/2 (43): 1404–1416
- On the Electrodynamics of Moving Systems II on English Wikisource
- Conway, A. W. (1911). "On the application of quaternions to some recent developments of electrical theory". Proceedings of the Royal Irish Academy, Section A 29: 1–9. https://archive.org/download/proceedingsofro29roya.
- Einstein, Albert (1905), "Zur Elektrodynamik bewegter Körper", Annalen der Physik, 322 (10): 891–921, Bibcode:1905AnP...322..891E, doi:10.1002/andp.19053221004. See also: English translation.
- Frank, Philipp (1909). "Die Stellung des Relativitätsprinzips im System der Mechanik und Elektrodynamik". Wiener Sitzungsberichte IIa 118: 373-446. http://hdl.handle.net/2027/mdp.39015073682224.
- Frank, Philipp; Rothe, Hermann (1911). "Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme". Annalen der Physik 339 (5): 825–855. doi:10.1002/andp.19113390502. http://gallica.bnf.fr/ark:/12148/bpt6k15337j/f845.table.
- Frank, Philipp; Rothe, Hermann (1912). "Zur Herleitung der Lorentztransformation". Physikalische Zeitschrift 13: 750–753.
- Gans, Richard (1905), "H. A. Lorentz. Elektromagnetische Vorgänge", Beiblätter zu den Annalen der Physik, 29 (4): 168–170
- H.A. Lorentz: Electromagnetic Phenomena on English Wikisource
- Gruner, Paul & Sauter, Josef (1921a). "Représentation géométrique élémentaire des formules de la théorie de la relativité". Archives des sciences physiques et naturelles. 5 3: 295–296. http://gallica.bnf.fr/ark:/12148/bpt6k2991536/f295.image.
- Elementary geometric representation of the formulas of the special theory of relativity on English Wikisource
- Gruner, Paul (1921b). "Eine elementare geometrische Darstellung der Transformationsformeln der speziellen Relativitätstheorie". Physikalische Zeitschrift 22: 384–385.
- Heaviside, Oliver (1889), "On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric" (PDF), Philosophical Magazine, 5, 27 (167): 324–339, doi:10.1080/14786448908628362
- Herglotz, Gustav (1910) [1909], "Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper]", Annalen der Physik, 336 (2): 393–415, Bibcode:1910AnP...336..393H, doi:10.1002/andp.19103360208
- Herglotz, G. (1911). "Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie". Annalen der Physik 341 (13): 493-533. http://gallica.bnf.fr/ark:/12148/bpt6k153397.image.f509.; English translation by David Delphenich: On the mechanics of deformable bodies from the standpoint of relativity theory.
- Ignatowsky, W. v. (1910). "Einige allgemeine Bemerkungen über das Relativitätsprinzip". Physikalische Zeitschrift 11: 972–976.
- Einige allgemeine Bemerkungen über das Relativitätsprinzip on German Wikisource
- Ignatowsky, W. v. (1910). "Das Relativitätsprinzip". Archiv der Mathematik und Physik 17: 1-24, 18: 17-40. http://hdl.handle.net/2027/mdp.39015085215708.
- Das Relativitätsprinzip on German Wikisource
- Klein, F. (1908). Hellinger, E.. ed. Elementarmethematik vom höheren Standpunkte aus. Teil I. Vorlesung gehalten während des Wintersemesters 1907-08. Leipzig: Teubner. https://archive.org/details/elementarmathem00kleigoog.
- Klein, F.; Sommerfeld A. (1910). Noether, Fr.. ed. Über die Theorie des Kreisels. Heft IV. Leipzig: Teuber. https://archive.org/details/fkleinundasommer019696mbp.
- Klein, Felix (1921) [1910]. Über die geometrischen Grundlagen der Lorentzgruppe. 1. 533–552. doi:10.1007/978-3-642-51960-4_31. ISBN 978-3-642-51898-0.
- Über die geometrischen Grundlagen der Lorentzgruppe on German Wikisource
- Klein, F. (1911). Hellinger, E.. ed. Elementarmethematik vom höheren Standpunkte aus. Teil I (Second Edition). Vorlesung gehalten während des Wintersemesters 1907-08. Leipzig: Teubner.
- Larmor, Joseph (1897), "On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media", Philosophical Transactions of the Royal Society, 190: 205–300, Bibcode:1897RSPTA.190..205L, doi:10.1098/rsta.1897.0020
- s:Dynamical Theory of the Electric and Luminiferous Medium III on English Wikisource
- Larmor, Joseph (1929) [1897], "On a Dynamical Theory of the Electric and Luminiferous Medium. Part 3: Relations with material media", Mathematical and Physical Papers: Volume II, Cambridge University Press, pp. 2–132, ISBN 978-1-107-53640-1 (Reprint of Larmor (1897) with new annotations by Larmor.)
- Larmor, Joseph (1900), Aether and Matter, Cambridge University Press
- Aether and Matter on English Wikisource
- Larmor, Joseph (1904a). "On the intensity of the natural radiation from moving bodies and its mechanical reaction". Philosophical Magazine 7 (41): 578–586. doi:10.1080/14786440409463149. https://archive.org/details/londonedinburgh671904lond.
- Larmor, Joseph (1904b). "On the ascertained Absence of Effects of Motion through the Aether, in relation to the Constitution of Matter, and on the FitzGerald-Lorentz Hypothesis". Philosophical Magazine 7 (42): 621–625. doi:10.1080/14786440409463156.
- Absence of Effects of Motion through the Aether on English Wikisource
- Lorentz, Hendrik Antoon (1892a), "La Théorie electromagnétique de Maxwell et son application aux corps mouvants", Archives Néerlandaises des Sciences Exactes et Naturelles, 25: 363–552
- Lorentz, Hendrik Antoon (1892b), "De relatieve beweging van de aarde en den aether", Zittingsverlag Akad. V. Wet., 1: 74–79
- The Relative Motion of the Earth and the Aether on English Wikisource
- Lorentz, Hendrik Antoon (1895), Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, Leiden: E.J. Brill
- Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern on German Wikisource
- Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies on English Wikisource
- Lorentz, Hendrik Antoon (1899), "Simplified Theory of Electrical and Optical Phenomena in Moving Systems", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 1: 427–442, Bibcode:1898KNAB....1..427L
- Simplified Theory of Electrical and Optical Phenomena in Moving Systems on English Wikisource
- Lorentz, Hendrik Antoon (1904), "Electromagnetic phenomena in a system moving with any velocity smaller than that of light", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6: 809–831, Bibcode:1903KNAB....6..809L
- Lorentz, Hendrik Antoon (1916) [1915], The theory of electrons and its applications to the phenomena of light and radiant heat, Leipzig & Berlin: B.G. Teubner
- Minkowski, Hermann (1915) [1907], "Das Relativitätsprinzip", Annalen der Physik, 352 (15): 927–938
- Das Relativitätsprinzip on German Wikisource
- Minkowski, Hermann (1908) [1907]. "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111. https://archive.org/details/nachrichten09klasgoog.
- Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern on German Wikisource
- The Fundamental Equations for Electromagnetic Processes in Moving Bodies on English Wikisource
- Minkowski, Hermann (1909) [1908]. "Raum und Zeit". Physikalische Zeitschrift 10: 75–88.
- Raum und Zeit on German Wikisource
- Space and Time on English Wikisource
- Plummer, H.C.K. (1910), "On the Theory of Aberration and the Principle of Relativity", Monthly Notices of the Royal Astronomical Society, 40: 252–266, Bibcode:1910MNRAS..70..252P
- On the Theory of Aberration and the Principle of Relativity on English Wikisource
- Poincaré, Henri (1900), "La théorie de Lorentz et le principe de réaction", Archives Néerlandaises des Sciences Exactes et Naturelles, 5: 252–278. See also the English translation.
- La théorie de Lorentz et le principe de réaction on French Wikisource
- Poincaré, Henri (1906) [1904], "The Principles of Mathematical Physics", Congress of arts and science, universal exposition, St. Louis, 1904, vol. 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622
- The Principles of Mathematical Physics on English Wikisource
- Poincaré, Henri (1905). "Sur la dynamique de l'électron". Comptes Rendus 140: 1504–1508. http://mariadb/chp/hp-pdf/hp1905crc.pdf.
- Sur la dynamique de l’électron on French Wikisource
- On the Dynamics of the Electron on English Wikisource
- Poincaré, Henri (1906) [1905]. "Sur la dynamique de l'électron". Rendiconti del Circolo Matematico di Palermo 21: 129–176. http://mariadb/chp/hp-pdf/hp1906rp.pdf.
- Sur la dynamique de l’électron on French Wikisource
- On the Dynamics of the Electron on English Wikisource
- Searle, George Frederick Charles (1897), "On the Steady Motion of an Electrified Ellipsoid", Philosophical Magazine, 5, 44 (269): 329–341, doi:10.1080/14786449708621072
- On the Steady Motion of an Electrified Ellipsoid on English Wikisource
- Silberstein, L. (1912) [1911], "Quaternionic form of relativity", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23 (137): 790–809, doi:10.1080/14786440508637276
- Silberstein, L. (1913) [1912], "Second memoir on quaternionic relativity", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25 (CXLV): 135–144
- Silberstein, L. (1914). The Theory of Relativity. London: Macmillan. https://archive.org/details/theoryofrelativi00silbrich.
- Sommerfeld, A. (1909), "Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie", Verh. Der DPG, 21: 577–582
- On the Composition of Velocities in the Theory of Relativity on English Wikisource
- Thomson, Joseph John (1889), "On the Magnetic Effects produced by Motion in the Electric Field", Philosophical Magazine, 5, 28 (170): 1–14, doi:10.1080/14786448908619821
- On the Magnetic Effects produced by Motion in the Electric Field on English Wikisource
- Varićak, V. (1910), "Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie", Physikalische Zeitschrift, 11: 93–6
- Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie on German Wikisource
- Application of Lobachevskian Geometry in the Theory of Relativity on English Wikisource
- Varičak, V. (1912), "Über die nichteuklidische Interpretation der Relativtheorie", Jahresbericht der Deutschen Mathematiker-Vereinigung, 21: 103–127
- Über die nichteuklidische Interpretation der Relativtheorie on German Wikisource
- On the Non-Euclidean Interpretation of the Theory of Relativity on English Wikisource
- Voigt, Woldemar (1887), "Ueber das Doppler'sche Princip", Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen (2): 41–51
- Ueber das Doppler'sche Princip on German Wikisource
- On the Principle of Doppler on English Wikisource
- Wien, Wilhelm (1904). "Zur Elektronentheorie". Physikalische Zeitschrift 5 (14): 393–395.
- Zur Elektronentheorie on German Wikisource
Secondary sources[edit | edit source]
- ↑ Miller (1981), chapter 1
- ↑ Miller (1981), chapter 4–7
- ↑ Pauli (1921), p. 561
- ↑ Barrett (2006), chapter 4, section 2
- ↑ Pauli (1921), pp. 562; 565–566
- ↑ Robinson (1990), chapter 3-4, analyzed the relation between "Kepler's formula" and the "physical velocity addition formula" in special relativity.
- ↑ Møller (1952/55), Chapter II, § 18
- ↑ Miller (1981), 114–115
- ↑ 9.0 9.1 Pais (1982), Kap. 6b
- ↑ Voigt's transformations and the beginning of the relativistic revolution, Ricardo Heras, arXiv:1411.2559 [1]
- ↑ Brown (2003)
- ↑ 12.0 12.1 12.2 Miller (1981), 98–99
- ↑ 13.0 13.1 Miller (1982), 1.4 & 1.5
- ↑ Janssen (1995), 3.1
- ↑ Darrigol (2000), Chap. 8.5
- ↑ Macrossan (1986)
- ↑ Janssen (1995), Kap. 3.3
- ↑ Miller (1981), Chap. 1.12.2
- ↑ Janssen (1995), Chap. 3.5.6
- ↑ Darrigol (2005), Kap. 4
- ↑ Pais (1982), Chap. 6c
- ↑ Katzir (2005), 280–288
- ↑ Miller (1981), Chap. 1.14
- ↑ Miller (1981), Chap. 6
- ↑ Pais (1982), Kap. 7
- ↑ Darrigol (2005), Chap. 6
- ↑ Walter (1999a), (1999b), (2018)
- ↑ Rindler (1969), p. 45
- ↑ Baccetti (2011), see references 1–25 therein.
- ↑ Cartan & Study (1908), sections 35–36
- ↑ Silberstein (1914), p. 156
- ↑ Madelung (1921), p. 207
- ↑ Møller (1952/55), pp. 41–43
- Baccetti, Valentina; Tate, Kyle; Visser, Matt (2012). "Inertial frames without the relativity principle". Journal of High Energy Physics 2012 (5): 119. doi:10.1007/JHEP05(2012)119.
- Barrett, J.F. (2006), The hyperbolic theory of relativity, arXiv:1102.0462
- Brown, Harvey R. (2001), "The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis", American Journal of Physics, 69 (10): 1044–1054, arXiv:gr-qc/0104032, Bibcode:2001AmJPh..69.1044B, doi:10.1119/1.1379733 See also "Michelson, FitzGerald and Lorentz: the origins of relativity revisited", Online.
- Cartan, É.; Study, E. (1908). "Nombres complexes". Encyclopédie des Sciences Mathématiques Pures et Appliquées 1.1: 328–468. http://gallica.bnf.fr/ark:/12148/bpt6k2440f/f173.image.
- Darrigol, Olivier (2000), Electrodynamics from Ampère to Einstein, Oxford: Oxford Univ. Press, ISBN 978-0-19-850594-5
- Darrigol, Olivier (2005), "The Genesis of the theory of relativity" (PDF), Séminaire Poincaré, 1: 1–22, Bibcode:2006eins.book....1D, doi:10.1007/3-7643-7436-5_1, ISBN 978-3-7643-7435-8
- Janssen, Michel (1995), A Comparison between Lorentz's Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble (Thesis)
- Katzir, Shaul (2005), "Poincaré's Relativistic Physics: Its Origins and Nature", Physics in Perspective, 7 (3): 268–292, Bibcode:2005PhP.....7..268K, doi:10.1007/s00016-004-0234-y
- Macrossan, M. N. (1986), "A Note on Relativity Before Einstein", The British Journal for the Philosophy of Science, 37 (2): 232–234, CiteSeerX 10.1.1.679.5898, doi:10.1093/bjps/37.2.232
- Madelung, E. (1922). Die mathematischen Hilfsmittel des Physikers. Berlin: Springer. https://archive.org/details/diemathematisch00madegoog.
- Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 978-0-201-04679-3
- Møller, C. (1955). The theory of relativity. Oxford Clarendon Press. https://archive.org/details/theoryofrelativi029229mbp.
- Pauli, Wolfgang (1921), "Die Relativitätstheorie", Encyclopädie der Mathematischen Wissenschaften, 5 (2): 539–776
In English: Pauli, W. (1981). Theory of Relativity. 165. Dover Publications. ISBN 978-0-486-64152-2. - Pais, Abraham (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 978-0-19-520438-4
- Rindler, W. (2013) [1969]. Essential Relativity: Special, General, and Cosmological. Springer. ISBN 978-1475711356.
- Robinson, E.A. (1990). Einstein's relativity in metaphor and mathematics. Prentice Hall. ISBN 9780132464970.
- Silberstein, L. (1914). The Theory of Relativity. London: Macmillan. https://archive.org/details/theoryofrelativi00silbrich.
- Volk, O. (1976). "Miscellanea from the history of celestial mechanics". Celestial mechanics 14 (3): 365–382. doi:10.1007/bf01228523. http://adsabs.harvard.edu/full/1976CeMec..14..365V.
- Walter, Scott A. (1999a). "Minkowski, mathematicians, and the mathematical theory of relativity". The Expanding Worlds of General Relativity. 7. Boston: Birkhäuser. 45–86. ISBN 978-0-8176-4060-6. http://scottwalter.free.fr/papers/1999-mmm-walter.html.
- Walter, Scott A. (1999b). "The non-Euclidean style of Minkowskian relativity". In J. Gray. The Symbolic Universe: Geometry and Physics. Oxford: Oxford University Press. pp. 91–127. http://scottwalter.free.fr/papers/1999-symbuniv-walter.html.
- Walter, Scott A. (2018). "Figures of light in the early history of relativity". In Rowe D.. Beyond Einstein. 14. New York: Birkhäuser. 3–50. doi:10.1007/978-1-4939-7708-6_1. ISBN 978-1-4939-7708-6. http://scottwalter.free.fr/papers/2018-be-walter.html.