History of 4-Vectors (edit )
The w:four-velocity is defined as the rate of change in the w:four-position of a particle with respect to the particle's w:proper time
τ
{\displaystyle \tau }
, while the derivative of four-velocity with respect to proper time is four-acceleration), and the product of four-velocity and mass is four-momentum. It can be represented as a function of three-velocity
u
{\displaystyle \mathbf {u} }
:
U
μ
=
d
X
μ
d
τ
=
γ
(
c
,
u
)
(
a
)
(
b
)
,
γ
=
1
1
−
v
2
c
2
{\displaystyle {\begin{matrix}U^{\mu }&={\frac {\mathrm {d} X^{\mu }}{\mathrm {d} \tau }}&=\gamma \left(c,\ \mathbf {u} \right)\\&(a)&(b)\end{matrix}},\quad \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}
.
w:Wilhelm Killing discussed Newtonian mechanics in non-Euclidean spaces by expressing coordinates (p,x,y,z) , velocity v=(p',x',y',z') , acceleration (p”,x”,y”,z”) in terms of four components, obtaining the following relations:[ M 1]
p
′
,
x
′
,
y
′
,
z
′
k
2
p
2
+
x
2
+
y
2
+
z
2
=
k
2
k
2
p
p
′
+
x
x
′
+
y
y
′
+
z
z
′
=
0
k
2
p
′
2
+
x
′
2
+
y
′
2
+
z
′
2
+
k
2
p
p
″
+
x
x
″
+
y
y
″
+
z
z
″
=
0
v
2
=
k
2
p
′
2
+
x
′
2
+
y
′
2
+
z
′
2
v
2
+
k
2
p
p
″
+
x
x
″
+
y
y
″
+
z
z
″
=
0
1
2
d
(
v
2
)
d
t
=
k
2
p
′
p
″
+
x
′
x
″
+
y
′
y
″
+
z
′
z
″
{\displaystyle {\begin{matrix}p',x',y',z'\\\hline k^{2}p^{2}+x^{2}+y^{2}+z^{2}=k^{2}\\k^{2}pp'+xx'+yy'+zz'=0\\k^{2}p^{\prime 2}+x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+k^{2}pp''+xx''+yy''+zz''=0\\\hline v^{2}=k^{2}p^{\prime 2}+x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\\v^{2}+k^{2}pp''+xx''+yy''+zz''=0\\{\frac {1}{2}}{\frac {d\left(v^{2}\right)}{dt}}=k^{2}p'p''+x'x''+y'y''+z'z''\end{matrix}}}
If the Gaussian curvature
1
/
k
2
{\displaystyle 1/k^{2}}
(with k as radius of curvature) is negative the velocity becomes related to the hyperboloid model of hyperbolic space, which at first sight becomes similar to the relativistic four-velocity in Minkowski space by setting
k
2
=
−
c
2
{\displaystyle k^{2}=-c^{2}}
with c as speed of light. However, Killing obtained his results by differentiation with respect to Newtonian time t , not relativistic proper time, so his expressions aren't relativistic four-vectors in the first place, in particular they don't involve a limiting speed. Also the dot product of acceleration and velocity differs from the relativistic result.
w:Henri Poincaré explicitly defined the four-velocity as:[ R 1]
k
0
ξ
,
k
0
η
,
k
0
ζ
,
k
0
{\displaystyle k_{0}\xi ,\quad k_{0}\eta ,\quad k_{0}\zeta ,\quad k_{0}}
with
k
0
=
1
1
−
∑
ξ
2
{\displaystyle k_{0}={\frac {1}{\sqrt {1-\sum \xi ^{2}}}}}
which is equivalent to (b) because
[
ξ
,
η
,
ζ
]
=
u
c
,
Σ
ξ
2
=
u
⋅
u
c
2
{\displaystyle \left[\xi ,\eta ,\zeta \right]={\frac {\mathbf {u} }{c}},\ \Sigma \xi ^{2}={\frac {\mathbf {u} \cdot \mathbf {u} }{c^{2}}}}
w:Hermann Minkowski employed matrix representation of four-vectors and six-vectors (i.e. antisymmetric second rank tensors) and their product from the outset. He defined the “velocity vector” (Geschwindigkeitsvektor or Raum-Zeit-Vektor Geschwindigkeit):[ R 2]
w
1
=
w
x
1
−
w
2
,
w
2
=
w
y
1
−
w
2
,
w
3
=
w
z
1
−
w
2
,
w
4
=
i
1
−
w
2
w
1
2
+
w
2
2
+
w
3
2
+
w
4
2
=
−
1
{\displaystyle {\begin{matrix}w_{1}={\frac {{\mathfrak {w}}_{x}}{\sqrt {1-{\mathfrak {w}}^{2}}}},\ w_{2}={\frac {{\mathfrak {w}}_{y}}{\sqrt {1-{\mathfrak {w}}^{2}}}},\ w_{3}={\frac {{\mathfrak {w}}_{z}}{\sqrt {1-{\mathfrak {w}}^{2}}}},\ w_{4}={\frac {i}{\sqrt {1-{\mathfrak {w}}^{2}}}}\\w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}=-1\end{matrix}}{\text{ }}}
which is equivalent to (b), which he used to form further four-vectors using electromagnetic quantities etc.:
w
F
=
−
Φ
electric rest force
w
F
∗
=
−
i
μ
Ψ
=
μ
w
f
∗
magnetic rest force
Ω
=
i
w
[
Φ
Ψ
]
∗
rest ray
−
w
s
¯
=
ϱ
′
rest density
s
+
(
w
s
¯
)
w
=
−
σ
w
F
rest current
ν
d
w
h
d
τ
=
K
+
(
w
K
¯
)
w
ponderomotive force density
{\displaystyle {\begin{aligned}wF&=-\Phi &&{\text{electric rest force}}\\wF^{*}&=-i\mu \Psi =\mu wf^{\ast }&&{\text{magnetic rest force}}\\\Omega &=iw[\Phi \Psi ]^{\ast }&&{\text{rest ray}}\\-w{\overline {s}}&=\varrho '&&{\text{rest density}}\\s+(w{\overline {s}})w&=-\sigma wF&&{\text{rest current}}\\\nu {\frac {dw_{h}}{d\tau }}&=K+(w{\overline {K}})w&&{\text{ponderomotive force density}}\end{aligned}}}
In 1908, he denoted the derivative of the position vector[ R 3]
x
˙
,
y
˙
,
z
˙
,
t
˙
{\displaystyle {\dot {x}},{\dot {y}},{\dot {z}},{\dot {t}}}
corresponding to (a). He went on to define the derivative of four-velocity with respect to proper time as "acceleration vector" (i.e. four-acceleration), and the product of four-velocity and mass as “momentum vector” (i.e. four-momentum).
The first discussion of four-velocity in an English language paper (even though in the broader context of w:spherical wave transformations ), was given by w:Harry Bateman in a paper read 1909 and published 1910:[ R 4]
w
1
=
w
x
1
−
w
2
,
w
2
=
w
y
1
−
w
2
,
w
3
=
w
z
1
−
w
2
,
w
4
=
1
1
−
w
2
,
{\displaystyle w_{1}={\frac {w_{x}}{\sqrt {1-w^{2}}}},\ w_{2}={\frac {w_{y}}{\sqrt {1-w^{2}}}},\ w_{3}={\frac {w_{z}}{\sqrt {1-w^{2}}}},\ w_{4}={\frac {1}{\sqrt {1-w^{2}}}},}
equivalent to (b), from which he derived four-acceleration and four-jerk:
d
w
1
d
s
=
w
˙
x
1
−
w
2
+
w
x
(
w
w
˙
)
(
1
−
w
2
)
2
,
…
d
2
w
1
d
s
2
=
w
¨
x
(
1
−
w
2
)
1
2
+
3
w
˙
x
(
w
w
˙
)
(
1
−
w
2
)
1
2
+
w
x
(
1
−
w
2
)
1
2
{
w
w
¨
+
3
(
w
w
˙
)
2
1
−
w
2
+
w
˙
2
+
(
w
w
˙
)
2
1
−
w
2
}
,
…
{\displaystyle {\begin{matrix}{\frac {dw_{1}}{ds}}={\frac {{\dot {w}}_{x}}{1-w^{2}}}+{\frac {w_{x}(w{\dot {w}})}{\left(1-w^{2}\right)^{2}}},\dots \\{\frac {d^{2}w_{1}}{ds^{2}}}={\frac {{\ddot {w}}_{x}}{\left(1-w^{2}\right)^{\frac {1}{2}}}}+{\frac {3{\dot {w}}_{x}(w{\dot {w}})}{\left(1-w^{2}\right)^{\frac {1}{2}}}}+{\frac {w_{x}}{\left(1-w^{2}\right)^{\frac {1}{2}}}}\left\{w{\ddot {w}}+{\frac {3(w{\dot {w}})^{2}}{1-w^{2}}}+{\dot {w}}^{2}+{\frac {(w{\dot {w}})^{2}}{1-w^{2}}}\right\},\dots \end{matrix}}}
w:Wladimir Ignatowski defined the “vector of first kind”:[ R 5]
(
v
1
−
n
v
2
,
1
1
−
n
v
2
)
{\displaystyle \left({\frac {\mathfrak {v}}{\sqrt {1-n{\mathfrak {v}}^{2}}}},\ {\frac {1}{\sqrt {1-n{\mathfrak {v}}^{2}}}}\right)}
equivalent to (b).
In the first textbook on relativity, w:Max von Laue explicitly used the term “four-velocity” (Vierergeschwindigkeit) for Y :[ R 6]
Y
⇒
Y
x
=
q
x
c
2
−
q
2
,
Y
y
=
q
y
c
2
−
q
2
,
Y
z
=
q
z
c
2
−
q
2
,
Y
l
=
i
c
c
2
−
q
2
,
(
or
Y
u
=
c
c
2
−
q
2
)
,
⇒
|
Y
|
=
i
{\displaystyle Y\Rightarrow {\begin{aligned}Y_{x}&={\frac {{\mathfrak {q}}_{x}}{\sqrt {c^{2}-q^{2}}}},&Y_{y}&={\frac {{\mathfrak {q}}_{y}}{\sqrt {c^{2}-q^{2}}}},\\Y_{z}&={\frac {{\mathfrak {q}}_{z}}{\sqrt {c^{2}-q^{2}}}},&Y_{l}&={\frac {ic}{\sqrt {c^{2}-q^{2}}}},\ \left({\text{or}}\ Y_{u}={\frac {c}{\sqrt {c^{2}-q^{2}}}}\right),\end{aligned}}\Rightarrow |Y|=i}
which is equivalent to (b), which he used to formulate the four-potential
Φ
{\displaystyle \Phi }
of an arbitrarily moving point charge de , as well as the four-convection and four-conduction using four-current P :[ R 7]
Φ
=
d
e
4
π
Y
(
Π
Y
)
K
=
−
(
Y
P
)
Y
Λ
=
P
+
(
Y
P
)
Y
{\displaystyle {\begin{matrix}\Phi ={\frac {de}{4\pi }}{\frac {Y}{(\Pi Y)}}\\K=-(YP)Y\\\Lambda =P+(YP)Y\end{matrix}}}
,
and the vector products with electromagnetic tensor
M
{\displaystyle {\mathfrak {M}}}
and displacement tensor
B
{\displaystyle {\mathfrak {B}}}
and their duals:[ R 8]
[
Y
B
]
=
ε
[
Y
M
]
[
Y
M
∗
]
=
μ
[
Y
B
∗
]
{\displaystyle {\begin{aligned}[][Y{\mathfrak {B}}]&=\varepsilon [Y{\mathfrak {M}}]\\{}[Y{\mathfrak {M}}^{\ast }]&=\mu [Y{\mathfrak {B}}^{\ast }]\end{aligned}}}
In the second edition (1913), Laue used four-velocty Y in order to define the four-acceleration
Y
˙
{\displaystyle {\dot {Y}}}
, four force K in terms of four-acceleration, and material four-current M (i.e. four-momentum density) using rest mass density
k
0
{\displaystyle k^{0}}
:[ R 9]
Y
˙
=
d
Y
d
τ
,
|
Y
|
˙
=
1
c
|
q
˙
0
|
d
(
m
Y
)
d
τ
⇒
m
d
Y
d
τ
=
K
M
=
k
0
Y
{\displaystyle {\begin{matrix}{\dot {Y}}={\frac {dY}{d\tau }},\quad |{\dot {Y|}}={\frac {1}{c}}|{\dot {\mathfrak {q}}}^{0}|\\{\frac {d(mY)}{d\tau }}\Rightarrow m{\frac {dY}{d\tau }}=K\\M=k^{0}Y\end{matrix}}}
,
w:Willem De Sitter defined the four-velocity in terms of both velocity
ϕ
{\displaystyle \phi }
and w:Proper velocity
(
ϕ
)
{\displaystyle (\phi )}
as:[ R 10]
(
ξ
)
,
(
η
)
,
(
ζ
)
,
(
κ
)
(
ξ
)
=
d
x
c
d
τ
,
(
η
)
=
d
y
c
d
τ
,
(
ζ
)
=
d
z
c
d
τ
,
(
κ
)
=
d
c
t
c
d
τ
ϕ
2
=
ξ
2
+
η
2
+
ζ
2
,
(
ϕ
)
2
=
(
ξ
)
2
+
(
η
)
2
+
(
ζ
)
2
(
κ
)
2
−
(
ϕ
)
2
=
1
(
d
τ
d
t
=
1
−
ϕ
2
=
1
(
κ
)
,
d
t
d
τ
=
(
κ
)
=
1
+
(
ϕ
)
2
)
{\displaystyle {\begin{matrix}(\xi ),(\eta ),(\zeta ),(\kappa )\\\hline (\xi )={\frac {dx}{cd\tau }},\ (\eta )={\frac {dy}{cd\tau }},\ (\zeta )={\frac {dz}{cd\tau }},\ (\kappa )={\frac {dct}{cd\tau }}\\\phi {}^{2}=\xi {}^{2}+\eta {}^{2}+\zeta {}^{2},\quad (\phi )^{2}=(\xi )^{2}+(\eta )^{2}+(\zeta )^{2}\\(\kappa )^{2}-(\phi )^{2}=1\\\left({\frac {d\tau }{dt}}={\sqrt {1-\phi ^{2}}}={\frac {1}{(\kappa )}},\ {\frac {dt}{d\tau }}=(\kappa )={\sqrt {1+(\phi )^{2}}}\right)\end{matrix}}}
equivalent to (b).
w:Gilbert Newton Lewis and w:Edwin Bidwell Wilson devised an alternative 4D vector calculus based on w:Dyadics which, however, never gained widespread support. They defined the “extended velocity” as a “1-vector”:[ R 11]
w
=
1
1
−
v
2
(
k
1
d
x
1
d
x
4
+
k
2
d
x
2
d
x
4
+
k
4
)
=
v
+
k
4
1
−
v
2
{\displaystyle \mathbf {w} ={\frac {1}{\sqrt {1-v^{2}}}}\left(\mathbf {k} _{1}{\frac {dx_{1}}{dx_{4}}}+\mathbf {k} _{2}{\frac {dx_{2}}{dx_{4}}}+\mathbf {k} _{4}\right)={\frac {\mathbf {v} +\mathbf {k} _{4}}{\sqrt {1-v^{2}}}}}
equivalent to (a,b).
w:Friedrich Kottler defined four-velocity as:[ R 12]
V
(
1
)
=
v
z
i
c
1
1
−
v
2
/
c
2
,
V
(
2
)
=
v
y
i
c
1
1
−
v
2
/
c
2
,
V
(
3
)
=
v
x
i
c
1
1
−
v
2
/
c
2
,
V
(
4
)
=
1
1
−
v
2
/
c
2
,
[
∑
α
=
1
4
(
V
(
α
)
)
2
=
1
]
{\displaystyle {\begin{aligned}V^{(1)}&={\frac {{\mathfrak {v}}_{z}}{ic}}{\frac {1}{\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}},&V^{(2)}&={\frac {{\mathfrak {v}}_{y}}{ic}}{\frac {1}{\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}},\\V^{(3)}&={\frac {{\mathfrak {v}}_{x}}{ic}}{\frac {1}{\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}},&V^{(4)}&={\frac {1}{\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}},\end{aligned}}\quad \left[\sum _{\alpha =1}^{4}\left(V^{(\alpha )}\right)^{2}=1\right]}
equivalent to (a,b) from which he derived four-acceleration and four-jerk, and demonstrated its relation to the tangent c_{1}^{(\alpha)} in terms of Frenet-Serret formulas, its derivative with respect to proper time, and its relation to four-acceleration and curvature
1
/
R
1
{\displaystyle 1/R_{1}}
:[ R 13]
d
x
(
α
)
d
s
=
c
1
(
α
)
=
V
(
α
)
,
d
2
x
(
α
)
d
s
2
=
d
c
1
(
α
)
d
s
=
c
2
(
α
)
R
1
=
d
V
(
α
)
d
s
,
α
=
1
,
2
,
3
∑
α
=
1
4
(
d
2
x
(
α
)
d
s
2
)
2
=
(
1
R
1
)
2
=
(
d
V
d
s
)
2
{\displaystyle {\begin{matrix}{\frac {dx^{(\alpha )}}{ds}}=c_{1}^{(\alpha )}=V^{(\alpha )},\ {\frac {d^{2}x^{(\alpha )}}{ds^{2}}}={\frac {dc_{1}^{(\alpha )}}{ds}}={\frac {c_{2}^{(\alpha )}}{\mathrm {R} _{1}}}={\frac {dV^{(\alpha )}}{ds}},\quad \alpha =1,2,3\\\sum _{\alpha =1}^{4}\left({\frac {d^{2}x^{(\alpha )}}{ds^{2}}}\right)^{2}=\left({\frac {1}{\mathrm {R} _{1}}}\right)^{2}=\left({\frac {dV}{ds}}\right)^{2}\end{matrix}}}
and derived four-acceleration and four-jerk:[ R 14]
−
c
2
d
V
d
s
=
d
2
x
d
τ
2
=
(
v
˙
,
0
)
1
1
−
v
2
/
c
2
+
(
v
,
i
c
)
v
v
˙
/
c
2
(
1
−
v
2
/
c
2
)
2
=
=
(
v
˙
⊥
,
0
)
1
1
−
v
2
/
c
2
+
(
v
˙
‖
,
0
)
1
(
1
−
v
2
/
c
2
)
2
+
(
0
,
i
c
v
˙
‖
v
(
1
−
v
2
/
c
2
)
2
)
,
−
i
c
3
d
2
V
d
s
2
=
d
3
x
d
τ
3
=
(
v
¨
,
0
)
1
(
1
−
v
2
/
c
2
)
3
+
(
v
¨
,
0
)
3
v
v
˙
c
2
(
1
−
v
2
/
c
2
)
5
+
(
v
,
i
c
)
{
v
˙
2
/
c
2
+
v
v
¨
c
2
(
1
−
v
2
/
c
2
)
5
+
4
(
v
v
˙
c
2
)
2
(
1
−
v
2
/
c
2
)
7
}
[
v
˙
=
v
˙
‖
+
v
˙
⊥
]
{\displaystyle {\begin{aligned}-c^{2}{\frac {dV}{ds}}&={\frac {d^{2}x}{d\tau ^{2}}}=({\dot {\mathfrak {v}}},0){\frac {1}{1-{\mathfrak {v}}^{2}/c^{2}}}+({\mathfrak {v}},ic){\frac {{\mathfrak {v}}{\mathfrak {\dot {v}}}/c^{2}}{\left(1-{\mathfrak {v}}^{2}/c^{2}\right)^{2}}}=\\&=({\dot {\mathfrak {v}}}_{\bot },0){\frac {1}{1-{\mathfrak {v}}^{2}/c^{2}}}+({\mathfrak {{\dot {\mathfrak {v}}}_{\Vert }}},0){\frac {1}{\left(1-{\mathfrak {v}}^{2}/c^{2}\right)^{2}}}+\left(0,{\frac {i}{c}}{\frac {{\mathfrak {{\dot {\mathfrak {v}}}_{\Vert }}}{\mathfrak {v}}}{\left(1-{\mathfrak {v}}^{2}/c^{2}\right)^{2}}}\right),\\-ic^{3}{\frac {d^{2}V}{ds^{2}}}=&{\frac {d^{3}x}{d\tau ^{3}}}=({\ddot {\mathfrak {v}}},0){\frac {1}{\left({\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}\right)^{3}}}+({\ddot {\mathfrak {v}}},0){\frac {3{\frac {{\mathfrak {v}}{\mathfrak {\dot {v}}}}{c^{2}}}}{\left({\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}\right)^{5}}}+({\mathfrak {v}},ic)\left\{{\frac {{\mathfrak {\dot {v}}}^{2}/c^{2}+{\frac {{\mathfrak {v}}{\mathfrak {\ddot {v}}}}{c^{2}}}}{\left({\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}\right)^{5}}}+{\frac {4\left({\frac {{\mathfrak {v}}{\mathfrak {\dot {v}}}}{c^{2}}}\right)^{2}}{\left({\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}\right)^{7}}}\right\}\\&\left[{\dot {\mathfrak {v}}}={\mathfrak {{\dot {\mathfrak {v}}}_{\Vert }}}+{\dot {\mathfrak {v}}}_{\bot }\right]\end{aligned}}}
In an unpublished manuscript on special relativity, written between 1912-1914, w:Albert Einstein defined four-velocity as:[ R 15]
(
G
μ
)
=
(
d
x
μ
−
∑
d
x
σ
2
)
G
1
=
q
x
c
2
−
q
2
…
G
4
=
i
c
c
2
−
q
2
{\displaystyle {\begin{matrix}\left(G_{\mu }\right)=\left({\frac {dx_{\mu }}{\sqrt {-\sum dx_{\sigma }^{2}}}}\right)\\\hline {\begin{aligned}G_{1}&={\frac {{\mathfrak {q}}_{x}}{\sqrt {c^{2}-q^{2}}}}\\&\dots \\G_{4}&={\frac {ic}{\sqrt {c^{2}-q^{2}}}}\end{aligned}}\end{matrix}}}
equivalent to (b) and used it to define four-momentum by multiplication with rest energy:[ R 16]
η
¯
0
c
(
G
μ
)
{\displaystyle {\frac {{\bar {\eta }}_{0}}{c}}\left(G_{\mu }\right)}
While w:Ludwik Silberstein used Biquaternions already in 1911, his first mention of the “velocity-quaternion” was given in 1914. He also defined its conjugate, its Lorentz transformation, the relation of four-acceleration Z , and its relation to the equation of motion as follows:[ R 17]
Y
=
d
q
d
τ
=
γ
p
[
ι
c
+
p
]
Y
Y
c
=
−
c
2
Y
′
=
Q
Y
Q
Z
=
d
Y
d
τ
Z
Y
c
+
Y
Z
c
=
0
d
m
Y
d
τ
=
X
{\displaystyle {\begin{matrix}Y={\frac {dq}{d\tau }}=\gamma _{p}[\iota c+\mathbf {p} ]\\YY_{c}=-c^{2}\\Y'=QYQ\\Z={\frac {dY}{d\tau }}\\ZY_{c}+YZ_{c}=0\\{\frac {dmY}{d\tau }}=X\end{matrix}}}
equivalent to (a,b).
Mathematical
Relativity
↑ Poincaré (1905/06), p. 173
↑ Minkowski (1907/8), p. 64–65,73
↑ Minkowski (1908), p. 84
↑ Bateman (1909/10), p. 253f
↑ Ignatowski (1910), p. 23
↑ Laue (1911), p. 63
↑ Laue (1911), p. 102, 119
↑ Laue (1911), p. 124
↑ Laue (1913), p. 69–70, 80, 230
↑ De Sitter (1911), p. 392
↑ Lewis/Wilson (1912), p. 443f
↑ Kottler (1912), p. 1663
↑ Kottler (1912), p. 1707
↑ Kottler (1912), p. 1663
↑ Einstein (1912), p. 84
↑ Einstein (1912), p. 97
↑ Silberstein (1914), p. 183
deSitter, W. (1911), "On the bearing of the Principle of Relativity on Gravitational Astronomy" , Monthly Notices of the Royal Astronomical Society , 71 : 388–415
Einstein, A. (1912–14), "Einstein's manuscript on the special theory of relativity" , The collected papers of Albert Einstein , vol. 4, pp. 3–108 {{citation }}
: CS1 maint: date format (link )
Ignatowsky, W. v. (1910), "Das Relativitätsprinzip" , Archiv der Mathematik und Physik 17: 1-24, 18: 17-40
Laue, M. v. (1911), Das Relativitätsprinzip , Braunschweig: Vieweg
Laue, M. v. (1913), Das Relativitätsprinzip (2. Edition) , Braunschweig: Vieweg
Lewis, G. N. & Wilson, E. B. (1912), "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" , Proceedings of the American Academy of Arts and Sciences , 48 : 387–507 {{citation }}
: CS1 maint: multiple names: authors list (link )
Minkowski, H. (1908) [1907], "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" , Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 53–111
Minkowski, H. (1909) [1908], "Raum und Zeit", Physikalische Zeitschrift , 10 : 75–88