History of 4-Vectors (edit )
The w:four-momentum
P
μ
{\displaystyle P^{\mu }}
is defined as the product of mass and w:four-velocity
U
μ
{\displaystyle U^{\mu }}
or alternatively can be obtained by integrating the four-momentum density
P
μ
/
V
{\displaystyle P^{\mu }/V}
with respect to volume V (the four-momentum density corresponds to components
T
α
0
{\displaystyle T^{\alpha 0}}
of the stress energy tensor combining energy density W and momentum density
g
{\displaystyle \mathbf {g} }
). In addition, replacing rest mass with rest mass density
μ
0
{\displaystyle \mu _{0}}
in terms of rest volume
V
0
{\displaystyle V_{0}}
produces the mass four-current
J
μ
{\displaystyle J^{\mu }}
in analogy to the electric four-current:
P
μ
=
m
U
μ
=
m
γ
(
c
,
v
)
=
(
E
c
,
p
)
⏟
=
1
c
∫
∫
∫
T
α
0
d
V
⏟
(
a
)
(
b
)
P
μ
/
V
=
1
c
T
α
0
=
(
W
c
,
g
)
⏟
(
c
)
J
μ
=
μ
0
U
μ
=
μ
(
c
,
v
)
⏟
[
∂
⋅
J
μ
=
0
]
(
d
)
[
γ
=
μ
μ
0
=
V
0
V
=
1
1
−
v
2
c
2
,
m
=
μ
V
=
μ
0
V
0
]
{\displaystyle {\begin{matrix}{\begin{matrix}P^{\mu }&\underbrace {=mU^{\mu }=m\gamma \left(c,\mathbf {v} \right)=\left({\frac {E}{c}},\mathbf {p} \right)} &=\underbrace {{\frac {1}{c}}\int \int \int T^{\alpha 0}dV} \\&(a)&(b)\\P^{\mu }/V&\underbrace {={\frac {1}{c}}T^{\alpha 0}=\left({\frac {W}{c}},\mathbf {g} \right)} \\&(c)\\J^{\mu }&\underbrace {=\mu _{0}U^{\mu }=\mu \left(c,\mathbf {v} \right)} \quad \left[\partial \cdot J^{\mu }=0\right]\\&(d)\end{matrix}}\\\left[\gamma ={\frac {\mu }{\mu _{0}}}={\frac {V_{0}}{V}}={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},\ m=\mu V=\mu _{0}V_{0}\right]\end{matrix}}}
Without explicitly defining the four-momentum vector, the Lorentz transformation of all components of (a) was given by #Planck (1907) , while the Lorentz transformation of all components of (c) were given by #Laue (1911-13) . The first explicit definition of (a) was given by #Minkowski (1908) , followed by #Lewis and Wilson (1912) , #Einstein (1912-14) , #Cunningham (1914) , #Weyl (1918-19) . Four-momentum density (c) played a role in the papers of #Einstein (1912-14) and #Lewis and Wilson (1912) . The material four-current (d) was given by #Laue (1913) and #Weyl (1918-19) .
After w:Albert Einstein gave the energy transformation into the rest frame in 1905 and the general energy transformation in May 1907, w:Max Planck in June 1907 defined the transformation of both momentum
G
{\displaystyle {\mathfrak {G}}}
and energy E as follows[ R 1]
G
x
′
′
=
c
c
2
−
v
2
(
G
x
−
v
(
E
+
p
V
)
c
2
)
,
G
y
′
′
=
G
y
,
G
z
′
′
=
G
z
,
E
′
=
c
c
2
−
v
2
(
E
−
v
G
x
−
v
(
x
˙
−
v
)
c
2
−
v
x
˙
p
V
)
{\displaystyle {\mathfrak {G}}_{x'}^{'}={\frac {c}{\sqrt {c^{2}-v^{2}}}}\left({\mathfrak {G}}_{x}-{\frac {v(E+pV)}{c^{2}}}\right),\ {\mathfrak {G}}_{y'}^{'}={\mathfrak {G}}_{y},\ {\mathfrak {G}}_{z'}^{'}={\mathfrak {G}}_{z},\ E'={\frac {c}{\sqrt {c^{2}-v^{2}}}}\left(E-v{\mathfrak {G}}_{x}-{\frac {v({\dot {x}}-v)}{c^{2}-v{\dot {x}}}}pV\right)}
or simplifying in terms of enthalpy R=E+pV :[ R 2]
G
x
′
′
=
c
c
2
−
v
2
(
G
x
−
v
R
c
2
)
,
G
y
′
′
=
G
y
,
G
z
′
′
=
G
z
,
R
′
=
c
c
2
−
v
2
(
R
−
v
G
x
)
{\displaystyle {\mathfrak {G}}_{x'}^{'}={\frac {c}{\sqrt {c^{2}-v^{2}}}}\left({\mathfrak {G}}_{x}-{\frac {vR}{c^{2}}}\right),\ {\mathfrak {G}}_{y'}^{'}={\mathfrak {G}}_{y},\ {\mathfrak {G}}_{z'}^{'}={\mathfrak {G}}_{z},\ R'={\frac {c}{\sqrt {c^{2}-v^{2}}}}\left(R-v{\mathfrak {G}}_{x}\right)}
and the transformations into the rest frame[ R 3]
E
=
c
c
2
−
v
2
E
0
′
+
q
2
c
2
−
v
2
V
p
0
′
,
R
=
c
c
2
−
v
2
R
0
′
,
G
=
q
c
2
R
=
q
c
c
2
−
v
2
R
0
′
[
G
x
=
G
x
˙
q
,
G
x
=
G
y
˙
q
,
G
z
=
G
z
˙
q
]
{\displaystyle {\begin{matrix}E={\frac {c}{\sqrt {c^{2}-v^{2}}}}E_{0}^{\prime }+{\frac {q^{2}}{\sqrt {c^{2}-v^{2}}}}Vp_{0}^{\prime },\quad R={\frac {c}{\sqrt {c^{2}-v^{2}}}}R_{0}^{\prime },\quad G={\frac {q}{c^{2}}}R={\frac {q}{c{\sqrt {c^{2}-v^{2}}}}}R_{0}^{\prime }\\\left[{\mathfrak {G}}_{x}=G{\frac {\dot {x}}{q}},\ {\mathfrak {G}}_{x}=G{\frac {\dot {y}}{q}},\ {\mathfrak {G}}_{z}=G{\frac {\dot {z}}{q}}\right]\end{matrix}}}
Even though Planck wasn't using four-vectors, his formulas correspond to the Lorentz transformation of four-vector
[
c
G
x
,
c
G
y
,
c
G
z
,
R
=
E
+
p
V
]
{\displaystyle \left[c{\mathfrak {G}}_{x},c{\mathfrak {G}}_{y},c{\mathfrak {G}}_{z},R=E+pV\right]}
, becoming the ordinary four-momentum
[
c
G
x
,
c
G
y
,
c
G
z
,
E
]
{\displaystyle \left[c{\mathfrak {G}}_{x},c{\mathfrak {G}}_{y},c{\mathfrak {G}}_{z},E\right]}
by setting the pressure p =0.
In 1907 (published 1908) w:Hermann Minkowski defined the following continuity equation with
ν
{\displaystyle \nu }
as rest mass density and w as four-velocity:[ R 4]
lor
ν
w
¯
=
∂
ν
w
1
∂
x
1
+
∂
ν
w
2
∂
x
2
+
∂
ν
w
3
∂
x
3
+
∂
ν
w
4
∂
x
4
=
0
[
lor
=
|
∂
∂
x
1
,
∂
∂
x
2
,
∂
∂
x
3
,
∂
∂
x
4
|
]
{\displaystyle {\begin{matrix}{\text{lor }}\nu {\overline {w}}={\frac {\partial \nu w_{1}}{\partial x_{1}}}+{\frac {\partial \nu w_{2}}{\partial x_{2}}}+{\frac {\partial \nu w_{3}}{\partial x_{3}}}+{\frac {\partial \nu w_{4}}{\partial x_{4}}}=0\\\left[{\text{lor }}=\left|{\frac {\partial }{\partial x_{1}}},\ {\frac {\partial }{\partial x_{2}}},\ {\frac {\partial }{\partial x_{3}}},\ {\frac {\partial }{\partial x_{4}}}\right|\right]\end{matrix}}}
which implies the mass four-current equivalent to (d).
The first mention of four-momentum (a) was given by Minkowski in his lecture “space and time” from 1908 (published 1909), calling it "momentum-vector" (“Impulsvektor”) as the product of mass m with the motion-vector (i.e. four-velocity) at a point P [ R 5] . He further noted that if the time component of four-momentum is multiplied by
c
2
{\displaystyle c^{2}}
it becomes the kinetic energy:
m
c
2
d
t
d
τ
=
m
c
2
/
1
−
v
2
c
2
{\displaystyle m\,c^{2}{\frac {dt}{d\tau }}=m\,c^{2}\left/{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}\right.}
w:Max von Laue (1911) in his influential first textbook on relativity, gave the Lorentz transformation of the components of the symmetric “world tensor” T (i.e. stress energy tensor), with the l=ict components being energy flux
S
{\displaystyle {\mathfrak {S}}}
, momentum density
g
{\displaystyle {\mathfrak {g}}}
, energy density W , and pointed out that the divergence of those l-components represents the energy conservation theorem (with A as power of the force density):[ R 6]
(
T
l
x
,
T
l
y
,
T
l
z
,
T
l
l
)
⇒
(
i
c
S
x
,
i
c
S
y
,
i
c
S
z
,
−
W
)
A
+
d
i
v
S
+
∂
W
∂
t
=
0
S
x
=
(
1
+
β
2
)
S
x
′
+
v
(
p
x
x
′
+
W
′
)
1
−
β
2
=
q
c
2
c
2
−
q
2
(
p
x
x
0
+
W
0
)
,
S
y
=
S
y
′
+
v
p
x
y
′
1
−
β
2
=
q
c
c
2
−
q
2
p
x
y
0
,
S
z
=
S
z
′
+
v
p
x
z
′
1
−
β
2
=
q
c
c
2
−
q
2
p
x
z
0
,
W
=
W
′
+
β
2
p
x
x
′
+
2
v
c
2
S
x
′
1
−
β
2
=
c
2
W
0
+
q
2
p
x
x
0
c
2
−
q
2
[
g
=
S
c
2
]
{\displaystyle {\begin{matrix}\left(T_{lx},T_{ly},T_{lz},T_{ll}\right)\Rightarrow \left({\frac {i}{c}}{\mathfrak {S}}_{x},\ {\frac {i}{c}}{\mathfrak {S}}_{y},\ {\frac {i}{c}}{\mathfrak {S}}_{z},\ -W\right)\\A+div{\mathfrak {S}}+{\frac {\partial W}{\partial t}}=0\\\hline {\begin{aligned}{\mathfrak {S}}_{x}&={\frac {\left(1+\beta ^{2}\right){\mathfrak {S}}_{x}^{\prime }+v\left(\mathbf {p} _{xx}^{\prime }+W^{\prime }\right)}{1-\beta ^{2}}}\\&={\frac {qc^{2}}{c^{2}-q^{2}}}\left(\mathbf {p} _{xx}^{0}+W^{0}\right)\end{aligned}},\ {\begin{aligned}{\mathfrak {S}}_{y}&={\frac {{\mathfrak {S}}_{y}^{\prime }+v\mathbf {p} _{xy}^{\prime }}{\sqrt {1-\beta ^{2}}}}\\&={\frac {qc}{c^{2}-q^{2}}}\mathbf {p} _{xy}^{0}\end{aligned}},\ {\begin{aligned}{\mathfrak {S}}_{z}&={\frac {{\mathfrak {S}}_{z}^{\prime }+v\mathbf {p} _{xz}^{\prime }}{\sqrt {1-\beta ^{2}}}}\\&={\frac {qc}{c^{2}-q^{2}}}\mathbf {p} _{xz}^{0}\end{aligned}},\ {\begin{aligned}W&={\frac {W'+\beta ^{2}\mathbf {p} _{xx}^{\prime }+2{\frac {v}{c^{2}}}{\mathfrak {S}}_{x}^{\prime }}{1-\beta ^{2}}}\\&={\frac {c^{2}W^{0}+q^{2}\mathbf {p} _{xx}^{0}}{c^{2}-q^{2}}}\end{aligned}}\\\left[{\mathfrak {g}}={\frac {\mathfrak {S}}{c^{2}}}\right]\end{matrix}}}
which components correspond to four-momentum density (c) in case of vanishing pressure p , even though Laue didn't directly denoted it as a four-vector.
In the second edition (1912, published 1913), Laue discussed hydrodynamics in special relativity, defining the four-current of a material volume element in terms of rest mass density
k
0
{\displaystyle k^{0}}
and four-velocity Y , and its continuity equation:[ R 7]
M
=
k
0
Y
M
x
=
k
q
x
c
,
M
y
=
k
q
y
c
,
M
z
=
k
q
z
c
,
M
l
=
i
k
D
i
v
M
=
k
0
D
i
v
Y
+
(
Y
,
Γ
ϱ
α
δ
k
0
)
=
0
[
k
0
=
k
c
2
−
q
2
c
,
D
i
v
=
four-divergence
,
Γ
ϱ
α
δ
=
four-gradient
,
l
=
i
c
t
]
{\displaystyle {\begin{matrix}M=k^{0}Y\\M_{x}={\frac {k{\mathfrak {q}}_{x}}{c}},\ M_{y}={\frac {k{\mathfrak {q}}_{y}}{c}},\ M_{z}={\frac {k{\mathfrak {q}}_{z}}{c}},\ M_{l}=ik\\Div\,M=k^{0}Div\,Y+\left(Y,\Gamma \varrho \alpha \delta \,k^{0}\right)=0\\\left[k^{0}=k{\frac {\sqrt {c^{2}-q^{2}}}{c}},\ Div={\text{four-divergence}},\ \Gamma \varrho \alpha \delta ={\text{four-gradient}},\ l=ict\right]\end{matrix}}}
equivalent to material four-current (d).
w:Edwin Bidwell Wilson and w:Gilbert Newton Lewis (1912) devised an alternative 4D vector calculus based on w:Dyadics which, however, never gained widespread support. They explicitly defined “extended momentum” (i.e. four-momentum)
m
0
w
{\displaystyle m_{0}\mathbf {w} }
and used it to derive the “extended force” (i.e. four force) together with
c
{\displaystyle \mathbf {c} }
as four-acceleration:[ R 8]
m
0
w
=
m
0
v
1
−
v
2
k
1
+
m
0
1
−
v
2
k
4
=
m
v
k
1
+
m
k
4
m
0
w
=
m
v
+
m
k
4
m
0
c
=
d
m
0
w
d
s
=
d
m
v
d
s
k
1
+
d
m
d
s
k
4
=
1
1
−
v
2
(
d
m
v
d
t
k
1
+
d
m
d
t
k
4
)
(
m
=
m
0
1
−
v
2
,
v
=
k
1
d
x
1
d
x
4
+
k
2
d
x
2
d
x
4
+
k
3
d
x
3
d
x
4
)
{\displaystyle {\begin{matrix}m_{0}\mathbf {w} ={\frac {m_{0}v}{\sqrt {1-v^{2}}}}\mathbf {k} _{1}+{\frac {m_{0}}{\sqrt {1-v^{2}}}}\mathbf {k} _{4}=mv\mathbf {k} _{1}+m\mathbf {k} _{4}\\m_{0}\mathbf {w} =m\mathbf {v} +m\mathbf {k} _{4}\\\hline m_{0}\mathbf {c} ={\frac {dm_{0}\mathbf {w} }{ds}}={\frac {dmv}{ds}}\mathbf {k} _{1}+{\frac {dm}{ds}}\mathbf {k} _{4}={\frac {1}{\sqrt {1-v^{2}}}}\left({\frac {dmv}{dt}}\mathbf {k} _{1}+{\frac {dm}{dt}}\mathbf {k} _{4}\right)\\\left(m={\frac {m_{0}}{\sqrt {1-v^{2}}}},\ \mathbf {v} =\mathbf {k} _{1}{\frac {dx_{1}}{dx_{4}}}+\mathbf {k} _{2}{\frac {dx_{2}}{dx_{4}}}+\mathbf {k} _{3}{\frac {dx_{3}}{dx_{4}}}\right)\end{matrix}}}
equivalent to (a). Using rest mass density
μ
0
{\displaystyle \mu _{0}}
, they also defined the extended vector[ R 9]
μ
0
w
=
μ
0
1
−
v
2
(
v
+
k
4
)
{\displaystyle \mu _{0}\mathbf {w} ={\frac {\mu _{0}}{\sqrt {1-v^{2}}}}\left(\mathbf {v} +\mathbf {k} _{4}\right)}
equivalent to the material four-current (d). Then they defined the four-momentum of radiant energy representing total momentum and energy per volume
d
S
{\displaystyle d{\mathfrak {S}}}
by integrating electromagnetic energy density
e
′
2
{\displaystyle e^{\prime 2}}
and the Poynting vector
e
′
2
l
s
l
4
{\displaystyle e^{\prime 2}{\tfrac {\mathbf {l} _{s}}{l_{4}}}}
:[ R 10]
d
g
=
(
e
′
2
l
s
l
4
+
e
′
2
k
4
)
d
S
{\displaystyle d\mathbf {g} =\left(e^{\prime 2}{\frac {\mathbf {l} _{s}}{l_{4}}}+e^{\prime 2}\mathbf {k} _{4}\right)d{\mathfrak {S}}}
equivalent to (b). They added, however, that the corresponding energy density vector
d
g
/
d
S
{\displaystyle d\mathbf {g} /d{\mathfrak {S}}}
is not a four-vector because it is not independent of the chose axis.
In an unpublished manuscript on special relativity (written around 1912/14), w:Albert Einstein showed how to derive the components of the momentum-energy four-vector from the components
T
μ
4
{\displaystyle T_{\mu 4}}
(four-momentum density) of the stress-energy tensor (overline indicates integration over volume,
G
μ
{\displaystyle G_{\mu }}
is four-velocity):[ R 11]
T
¯
14
=
i
c
g
¯
1
=
i
c
∫
g
x
d
x
d
y
d
z
T
¯
44
=
−
η
¯
=
−
∫
η
d
x
d
y
d
z
(
g
¯
1
,
g
¯
1
,
g
¯
1
,
i
c
η
¯
)
⇒
η
¯
0
c
(
G
μ
)
g
¯
=
m
q
x
1
−
q
2
c
2
,
η
¯
=
m
c
2
1
−
q
2
c
2
[
η
¯
0
c
2
=
m
]
{\displaystyle {\begin{matrix}{\overline {T}}_{14}=ic{\overline {\mathfrak {g}}}_{1}=ic\int {\mathfrak {g}}_{x}dxdydz\\{\overline {T}}_{44}=-{\overline {\eta }}=-\int \eta \,dxdydz\\\left({\overline {\mathfrak {g}}}_{1},{\overline {\mathfrak {g}}}_{1},{\overline {\mathfrak {g}}}_{1},{\frac {i}{c}}{\overline {\eta }}\right)\Rightarrow {\frac {{\overline {\eta }}_{0}}{c}}\left(G_{\mu }\right)\\\hline {\overline {\mathfrak {g}}}={\frac {m{\mathfrak {q}}_{x}}{\sqrt {1-{\frac {q^{2}}{c^{2}}}}}},\ {\overline {\eta }}={\frac {mc^{2}}{\sqrt {1-{\frac {q^{2}}{c^{2}}}}}}\\\left[{\frac {{\bar {\eta }}_{0}}{c^{2}}}=m\right]\end{matrix}}}
equivalent to (a,b,c).
In the context of his Entwurf theory (a precursor of general relativity), Einstein (1913) formulated the following equations for momentum J and energy E using the metric tensor
g
μ
ν
{\displaystyle g_{\mu \nu }}
, from which he concluded that momentum and energy of a material point form a “covariant vector” (i.e. covariant four-momentum), and also showed that the corresponding volume densities are equal to certain components of the stress-energy tensor
Θ
μ
ν
{\displaystyle \Theta _{\mu \nu }}
(i.e. w:dust solution ):[ R 12]
J
x
=
m
∂
H
∂
x
˙
=
m
x
˙
c
2
−
q
2
,
etc.
E
=
∂
H
∂
x
˙
x
˙
+
∂
H
∂
y
˙
y
˙
+
∂
H
∂
z
˙
z
˙
−
H
=
m
c
2
c
2
−
q
2
J
x
=
−
m
g
11
x
1
˙
+
g
12
x
2
˙
+
g
13
x
3
˙
+
g
14
d
s
d
t
=
−
m
g
11
d
x
1
+
g
12
d
x
2
+
g
13
d
x
3
+
g
14
d
x
4
d
s
,
−
E
=
−
(
x
˙
∂
H
∂
x
˙
+
⋅
+
⋅
)
+
H
=
−
m
(
g
41
d
x
1
d
s
+
g
42
d
x
2
d
s
+
g
43
d
x
3
d
s
+
g
44
d
x
4
d
s
)
J
x
V
=
−
ϱ
0
−
g
⋅
∑
ν
g
1
ν
d
x
ν
d
s
⋅
d
x
4
d
s
−
E
V
=
−
ϱ
0
−
g
⋅
∑
ν
g
4
ν
d
x
ν
d
s
⋅
d
x
4
d
s
[
Θ
μ
ν
=
ϱ
0
d
x
μ
d
s
⋅
d
x
ν
d
s
,
ϱ
0
=
m
V
0
]
{\displaystyle {\begin{matrix}J_{x}=m{\frac {\partial H}{\partial {\dot {x}}}}=m{\frac {\dot {x}}{\sqrt {c^{2}-q^{2}}}},\ {\text{etc.}}\\E={\frac {\partial H}{\partial {\dot {x}}}}{\dot {x}}+{\frac {\partial H}{\partial {\dot {y}}}}{\dot {y}}+{\frac {\partial H}{\partial {\dot {z}}}}{\dot {z}}-H=m{\frac {c^{2}}{\sqrt {c^{2}-q^{2}}}}\\\hline J_{x}=-m{\frac {g_{11}{\dot {x_{1}}}+g_{12}{\dot {x_{2}}}+g_{13}{\dot {x_{3}}}+g_{14}}{\frac {ds}{dt}}}=-m{\frac {g_{11}dx_{1}+g_{12}dx_{2}+g_{13}dx_{3}+g_{14}dx_{4}}{ds}},\\-E=-\left({\dot {x}}{\frac {\partial H}{\partial {\dot {x}}}}+\cdot +\cdot \right)+H=-m\left(g_{41}{\frac {dx_{1}}{ds}}+g_{42}{\frac {dx_{2}}{ds}}+g_{43}{\frac {dx_{3}}{ds}}+g_{44}{\frac {dx_{4}}{ds}}\right)\\\hline {\frac {J_{x}}{V}}=-\varrho _{0}{\sqrt {-g}}\cdot \sum _{\nu }g_{1\nu }{\frac {dx_{\nu }}{ds}}\cdot {\frac {dx_{4}}{ds}}\\-{\frac {E}{V}}=-\varrho _{0}{\sqrt {-g}}\cdot \sum _{\nu }g_{4\nu }{\frac {dx_{\nu }}{ds}}\cdot {\frac {dx_{4}}{ds}}\\\left[\Theta _{\mu \nu }=\varrho _{0}{\frac {dx_{\mu }}{ds}}\cdot {\frac {dx_{\nu }}{ds}},\ \varrho _{0}={\frac {m}{V_{0}}}\right]\end{matrix}}}
equivalent to (a,b,c) in the case of
g
μ
ν
{\displaystyle g_{\mu \nu }}
being the Minkowski tensor.
In 1914 Einstein summarized his previous arguments using the covariant four-vector
I
σ
{\displaystyle \mathbf {I} _{\sigma }}
(i.e. covariant four-momentum) and explicitly showed that in the case of
g
μ
ν
{\displaystyle g_{\mu \nu }}
being the Minkowski tensor it becomes the ordinary four-momentum of special relativity. He also argued in a footnote why (in terms of his theory of gravitation) this covariant four-momentum
I
σ
{\displaystyle \mathbf {I} _{\sigma }}
is preferable over the contravariant four-momentum
I
σ
{\displaystyle \mathbf {I} ^{\sigma }}
:[ R 13]
I
σ
=
m
∑
μ
g
σ
μ
d
x
μ
d
s
d
I
σ
d
x
4
=
∑
ν
τ
Γ
ν
σ
τ
d
x
ν
d
x
4
I
τ
+
∫
K
σ
d
v
g
μ
ν
=
−
1
0
0
0
0
−
1
0
0
0
0
−
1
0
0
0
0
1
⇒
−
I
1
=
m
q
x
1
−
q
2
…
I
4
=
m
1
−
q
2
}
I
σ
=
m
d
x
σ
d
s
{\displaystyle {\begin{matrix}\mathbf {I} _{\sigma }=m\sum _{\mu }g_{\sigma \mu }{\frac {dx_{\mu }}{ds}}\\{\frac {d\mathbf {I} _{\sigma }}{dx_{4}}}=\sum _{\nu \tau }\Gamma _{\nu \sigma }^{\tau }{\frac {dx_{\nu }}{dx_{4}}}\mathbf {I} _{\tau }+\int {\mathfrak {K}}_{\sigma }dv\\g_{\mu \nu }={\begin{matrix}-1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&1\end{matrix}}\Rightarrow \left.{\begin{aligned}-\mathbf {I} _{1}&={\frac {m{\mathfrak {q}}_{x}}{\sqrt {1-q^{2}}}}\\&\dots \\\mathbf {I} _{4}&={\frac {m}{\sqrt {1-q^{2}}}}\end{aligned}}\right\}\\\hline \mathbf {I} ^{\sigma }=m{\frac {dx_{\sigma }}{ds}}\end{matrix}}}
equivalent to (a).
Like Wilson and Lewis, w:Ebenezer Cunningham used the expression “extended momentum”
g
{\displaystyle {\mathfrak {g}}}
(i.e. four-momentum), and derived the four-force from it:[ R 14]
g
=
(
g
,
i
w
/
c
)
δ
g
=
(
δ
g
,
i
δ
w
/
c
)
d
g
d
t
0
=
κ
(
d
g
d
t
,
i
c
d
w
d
t
)
g
=
w
0
v
c
2
(
1
−
v
2
/
c
2
)
1
2
,
w
=
w
0
(
1
−
v
2
/
c
2
)
1
2
{\displaystyle {\begin{matrix}{\mathfrak {g}}=(\mathbf {g} ,iw/c)\\\delta {\mathfrak {g}}=(\delta \mathbf {g} ,i\delta w/c)\\{\frac {d{\mathfrak {g}}}{dt_{0}}}=\kappa \left({\frac {d\mathbf {g} }{dt}},\ ic{\frac {dw}{dt}}\right)\\\hline \mathbf {g} ={\frac {w_{0}\mathbf {v} }{c^{2}\left(1-v^{2}/c^{2}\right)^{\frac {1}{2}}}},\ w={\frac {w_{0}}{\left(1-v^{2}/c^{2}\right)^{\frac {1}{2}}}}\end{matrix}}}
equivalent to (a, b).
In the first edition of his book “space time matter”, w:Hermann Weyl (1918) defined the “material current” in terms of rest mass density and four-velocity, together with its continuity equation:[ R 15]
μ
0
u
i
∑
i
∂
(
μ
0
u
i
)
∂
x
i
=
0
[
d
v
d
V
=
μ
,
d
m
d
V
0
=
μ
0
,
μ
0
=
μ
1
−
v
2
,
d
V
=
d
V
0
1
−
v
2
]
{\displaystyle {\begin{matrix}\mu _{0}u^{i}\\\sum _{i}{\frac {\partial \left(\mu _{0}u^{i}\right)}{\partial x_{i}}}=0\\\left[{\frac {dv}{dV}}=\mu ,\ {\frac {dm}{dV_{0}}}=\mu _{0},\ \mu _{0}=\mu {\sqrt {1-v^{2}}},\ dV=dV_{0}{\sqrt {1-v^{2}}}\right]\end{matrix}}}
equivalent to (d).
In 1919, in the framework of general relativity, he expressed the pseudotensor density of total energy as
S
i
k
{\displaystyle \left.{\mathfrak {S}}_{i}\right.^{k}}
, with the integral
J
i
{\displaystyle J_{i}}
(i.e. four-momentum) of
S
i
0
{\displaystyle \left.{\mathfrak {S}}_{i}\right.^{0}}
(i.e. four-momentum density) in space
x
0
{\displaystyle x_{0}}
= const. representing energy (i =0) and momentum (i =1,2,3). For an arbitrary coordinate system he defined is as the product of mass and four-velocity[ R 16]
S
i
0
⇒
J
i
=
m
u
i
,
u
i
=
d
x
i
d
s
{\displaystyle \left.{\mathfrak {S}}_{i}\right.^{0}\Rightarrow J_{i}=mu_{i},\quad u_{i}={\frac {dx_{i}}{ds}}}
equivalent to (a,b,c).
In the third edition of his book (1919), the description of the material current remained the same as in the first edition,[ R 17] but this time he also included a description of four-momentum
J
i
{\displaystyle J_{i}}
in terms of four-momentum density
S
i
0
{\displaystyle \left.{\mathfrak {S}}_{i}\right.^{0}}
:[ R 18]
J
i
=
∫
U
i
0
d
x
1
d
x
2
d
x
3
;
J
0
2
−
J
1
2
−
J
2
2
−
J
3
2
=
mass
J
i
=
∫
Ω
S
i
0
d
x
1
d
x
2
d
x
3
J
i
=
m
u
i
(
u
i
=
d
x
i
d
s
)
d
J
i
d
t
=
K
i
{\displaystyle {\begin{matrix}J_{i}=\int {\mathfrak {U}}_{i}^{0}dx_{1}dx_{2}dx_{3};\quad {\sqrt {J_{0}^{2}-J_{1}^{2}-J_{2}^{2}-J_{3}^{2}}}={\text{mass}}\\J_{i}=\int _{\Omega }{\mathfrak {S}}_{i}^{0}dx_{1}dx_{2}dx_{3}\\J_{i}=mu_{i}\quad \left(u^{i}={\frac {dx_{i}}{ds}}\right)\\{\frac {dJ_{i}}{dt}}=K_{i}\end{matrix}}}
equivalent to (a,b,c).
↑ Planck (1907), eq. 28,29,33
↑ Planck (1907), eq. 28,31,34
↑ Planck (1907), eq. 43,45,46
↑ Minkowski (1907), p. 102
↑ Minkowski (1908), p. 85
↑ Laue (1911), p. 82ff, 184f
↑ Laue (1913), p. 230
↑ Lewis/Wilson (1911), p. 420, 444
↑ Lewis/Wilson (1911), p. 467
↑ Lewis/Wilson (1911), p. 478f
↑ Einstein (1912/14), p. 96f
↑ Einstein/Grossmann (1913), p. 227, 229, 232
↑ Einstein (1914), p. 1060, 1082
↑ Cunningham (1914), p. 162f
↑ Weyl (1918), p. 148
↑ Weyl (1918), p. 125-128
↑ Weyl (1919), p. 158
↑ Weyl (1919), p. 233-234, 257-259
Cunningham, E. (1914), The principle of relativity , Cambridge: University Press
Einstein, A. (1912–14), "Einstein's manuscript on the special theory of relativity" , The collected papers of Albert Einstein , vol. 4, pp. 3–108 {{citation }}
: CS1 maint: date format (link )
Einstein, A. & Grossmann, M. (1913), "Entwurf einer verallgemeinerten Relativitätstheorie und eine Theorie der Gravitation" , Zeitschrift für Mathematik und Physik , 62 : 225–261 {{citation }}
: CS1 maint: multiple names: authors list (link )
Einstein, A. (1914), "Die Formale Grundlage der allgemeinen Relativitätstheorie" , Berliner Sitzungsberichte , 1914 (2): 1030–1085
Laue, M. v. (1911), Das Relativitätsprinzip , Braunschweig: Vieweg
Laue, M. v. (1913), Das Relativitätsprinzip (2. Edition) , Braunschweig: Vieweg
Lewis, G. N. & Wilson, E. B. (1912), "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" , Proceedings of the American Academy of Arts and Sciences , 48 : 387–507 {{citation }}
: CS1 maint: multiple names: authors list (link )
Minkowski, H. (1908) [1907], "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" , Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 53–111
Minkowski, H. (1909) [1908], "Raum und Zeit", Physikalische Zeitschrift , 10 : 75–88
Planck, M. (1907), "Zur Dynamik bewegter Systeme", Berliner Sitzungsberichte, Erster Halbband , 29 : 542–570 Reprinted in: Planck, M. (1908) [1907], "Zur Dynamik bewegter Systeme" , Annalen der Physik , 331 (6): 1–34
Weyl, H. (1918), Raum-Zeit-Relativität , Berlin: Springer
Weyl, H. (1919), "Eine neue Erweiterung der Relativitätstheorie" , Annalen der Physik , 364 (10): 101–133
Weyl, H. (1919), Raum-Zeit-Relativität (3. Auflage) , Berlin: Springer