From Wikiversity
Jump to: navigation, search
French painter and art theorist, Charles Lebrun is the dominant artist of Louis XIV's reign. Credit: Gdr.


What is history?[edit]

History starts with events, particularly in human affairs.

These events are in the past.

As these events are no longer here in the present, they cannot be studied directly.

Sometimes there is a whole series of events connected with someone or something.

A continuous, typically chronological, record of important or public events or of a particular trend or institution is studied as a history of these events.

History can be as long as a few seconds ago to hundreds of years ago.


Main sources: Radiation/Organisms and Organisms
Trematolobelia macrostachys occurs on Mount Ka'ala, O'ahu. Credit: Karl Magnacca.

An evolutionary radiation is an increase in taxonomic diversity or morphological disparity, due to adaptive change or the opening of ecospace.[1] Radiations may affect one clade or many, and be rapid or gradual; where they are rapid, and driven by a single lineage's adaptation to their environment, they are termed adaptive radiations.[2]

Perhaps the most familiar example of an evolutionary radiation is that of [Eutheria] placental mammals immediately after the extinction of the dinosaurs at the end of the Cretaceous, about 65 million years ago. At that time, the placental mammals were mostly small, insect-eating animals similar in size and shape to modern shrews. By the Eocene (58–37 million years ago), they had evolved into such diverse forms as bats, whales, and horses.[3]

The Hawaiian lobelioids [in the image on the left] are a group of flowering plants in the [Campanula] bellflower family, Campanulaceae, all of which are endemic to the Hawaiian Islands. This is the largest plant radiation in the Hawaiian Islands, and indeed the largest on any island archipelago, with over 125 species.


Main source: Humanities

History as creative writing[edit]

A compilation of historical writings History as creative writing that created social transformation.

Theoretical history[edit]

Def. a period of time that has already happened, in contrast to the present and the future is called a past.


  1. an occurrence; something that happens,
  2. a point in spacetime having three spatial coordinates and one temporal coordinate,
  3. a possible action that the user can perform that is monitored by an application or the operating system, or
  4. a set of some of the possible outcomes; a subset of the sample space

is called an event.


  1. the aggregate of past events,
  2. the branch of knowledge that studies the past; the assessment of notable events,
  3. a set of events involving an entity,
  4. a record or narrative description of past events,
  5. the list of past and continuing medical conditions of an individual or family,
  6. a record of previous user events, especially of visited web pages in a browser, or
  7. something that no longer exists or is no longer relevant

is called history.


Main sources: Geopolitics/Entities and Entities

"History and experience act as a filter that can distort as much as elucidate. It is largely forgotten now, overlooked in the one-line description of Tony Blair and George W Bush as the men who lied about Iraq's weapons of mass destruction, but there was a wider context to their conviction."[4] Bold added.

Types of history[edit]

History is broken up into many different categories that define what time period and event that it was.

Terms such as Era, Eon, Age and so on, are used to describe and classify what the time period is or what the period had to offer.


Main sources: History/Recent and Recent history

The recent history period dates from around 1,000 b2k to present.

"While the human groups are many and diverse, they are conveniently combined in two categories: first, the natural or consanguineal or kinship group in which the unit is the ethnos; and second, the artificial or essentially social group in which the unit is the demos. The ethnos, or ethnic group, is the homologue of the varietal or specific group of animals; it is the dominant group in lower savagery, but its influence on human life wanes upward, to practically disappear in enlightenment except as retained in the structure of the family. The demos is the product of intelligence applied to the regulation of human affairs; it has no true homologue among animals; its importance waxes as that of the ethnos wanes from savagery through barbarism and civilization and thence into enlightenment."[5]

"Few concepts are as emotionally charged as that of race. The word conjures up a mixture of associations—culture, ethnicity, genetics, subjugation, exclusion and persecution. But is the tragic history of efforts to define groups of people by race really a matter of the misuse of science, the abuse of a valid biological concept?"[6]

20th Century[edit]

20th-century Rwandan bottle: artistic works may serve practical functions, in addition to their decorative value. Credit: Cliff, Arlington, VA USA.

Bottle, Tswa peoples, Rwanda, Early-mid 20th century, Ceramic, resin, commercial paint, wax: Potters--primarily women--hand-build a variety of vessels that they embellish with beautiful colors, designs and motifs before firing them at low temperatures. Containers made for daily use hold water or serve as cooking utensils. They also make vessels to be used in special ceremonies or that become part of an assemblage of objects placed in a shrine. The brilliant red, bold zigzag motif was probably rendered with imported paint and applied to the body after firing. The surface was covered with wax to enhance the natural color of the clay. The paint and wax may have been applied to the bottle by someone other than the potter.

19th Century[edit]

Napoleon I on his Imperial Throne is portrayed by Jean-Auguste-Dominique Ingres (French, 1806), oil on canvas. Credit: Jean-Auguste-Dominique Ingres.
A Navajo blanket was made circa 1880. Credit: Unknown Navajo weaver, pre-1889.

The painting Napoleon I on his Imperial Throne dates to 1806 by artist Jean-Auguste-Dominique Ingres.

"This blanket [in the image centered] was woven at the end of the "wearing blanket era," just as the railroad came into the Southwest in 1881. The heavier handspun yarns and synthetic dyes are typical of pieces made during the transition from blanket weaving to rug weaving."-Ann Hedlund, Arizona State Museum.

Little Ice Age[edit]

Changes in the 14C record, which are primarily (but not exclusively) caused by changes in solar activity, are graphed over time. Credit: Leland McInnes.

The Little Ice Age (LIA) appears to have lasted from about 1218 (782 b2k) to about 1878 (122 b2k).

18th Century[edit]

The more recent dated logboat of Ireland is from or known as Bond's Bridge, Cos AmlaghJTyrone, to 245 ± 15 b2k.[7]

17th Century[edit]

A logboat from Northern Ireland designated GrN-14744 dates to 305 ± 30 b2k.[7]

16th Century[edit]

LiDAR gave the power to see underneath the lava that covers Angamuco. Credit: Chris Fisher.{{fairuse}}

A logboat from Ireland (Derryloughan B, Co. Tyrone) designated GrN-14738 dates to 410 ± 35 b2k.[7]

Angamuco "occupied 26 square kilometers of land instead of 13 square kilometers."[8]

"That is a huge area with a lot of people and a lot of architectural foundations that are represented."[9]

"If you do the maths, all of a sudden you are talking about 40,000 building foundations up there, which is [about] the same number of building foundations that are on the island of Manhattan."[9]

Angamuco "had an unusual layout, with big structures like pyramids and open plazas situated around the edges rather than in the center."[8]

"The Purépecha people existed at the same time as the Aztecs. While they are nowhere near as popular as their rivals, they were still a major civilization and had an imperial capital called Tzintzuntzan in western Mexico. Based on [...] LiDAR scans, though, Angamuco is even bigger Tzintzuntzan. It likely wasn't as densely populated, but [...] it's now the biggest city in western Mexico during that period that we know of."[8]

"In I523 Cortes quietly appropriated for himself the great Tarascan-held silver district of Tamazula (Jalisco)."[10]

Late Middle Ages[edit]

The Shroud of Turin: modern photo of the face, is shown positive left, digitally processed image right. Credit: Dianelos Georgoudis.

The Late Middle Ages extends from about 700 b2k to 500 b2k.

Italian humanism began in the first century of the late Middle Ages (c.1350-1450).[11]

The processed image at the right in the images on the right is the product of the application of digital filters. Digital filters are mathematical functions that do not add any information to the image, but transform it in such a way that information already present in it becomes more visible or easier to appreciate by the naked eye. The processed image was produced by inverting the brightness of the pixels in the positive image but without inverting their hue, and then by increasing both the brightness contrast and the hue saturation. Finally noise and so-called “salt and pepper” filters automatically removed the noisy information from the original image which hinders the appreciation of the actual face. To my knowledge the resulting image is the best available and indeed the only one that reveals the color information hidden in the original.

Radiocarbon dating of a corner piece of the shroud placed it between the years 1260 and 1390,[12] in the High to Late Middle Ages, which is consistent with "its first recorded exhibition in France in 1357."[13]

"Italy from the peace of Lodi to the first French invasion (1454-94): the era of equilibrium"[11] is near the end of the late Middle Ages.

High Middle Ages[edit]

The map shows the geographical distribution of the archaeological sites sampled. Credit: Nicole Maca-Meyer, Matilda Arnay, Juan Carlos Rando, Carlos Flores, Ana M González, Vicente M Cabrera, José M Larruga.

The High Middle Ages date from around 1,000 b2k to 700 b2k.

Mitochondrial "DNA analysis (HVRI sequences and RFLPs) [have been performed from] aborigine remains around 1000 years old. The sequences retrieved show that the Guanches possessed U6b1 lineages that are in the present day Canarian population, but not in Africans. In turn, U6b, the phylogenetically closest ancestor found in Africa, is not present in the Canary Islands. Comparisons with other populations relate the Guanches with the actual inhabitants of the Archipelago and with Moroccan Berbers. This shows that, despite the continuous changes suffered by the population (Spanish colonisation, slave trade), aboriginal mtDNA lineages constitute a considerable proportion of the Canarian gene pool. Although the Berbers are the most probable ancestors of the Guanches, it is deduced that important human movements have reshaped Northwest Africa after the migratory wave to the Canary Islands."[14]

The "sublineage U6b1 is the most prevalent of the U6 subhaplogroup in the Canarian population,4 and has still not been detected in North Africa."[14]

"This survey includes 131 teeth, corresponding to 129 different individuals, belonging to 15 archaeological sites sampled from four of the seven Canary Islands and dated around 1000 years old [image on the right]."[14]

"The Canarian-specific U6b1 sequences are also found in high frequency (8.45%), corroborating the fact that these lineages were already present in the aboriginal population. Three additional founder haplotypes4 were also detected (260, 069 126 and 126 292 294), all of them showing equal or higher frequencies than in the present day Canarian population."[14]

"The detection in the Guanches of the most abundant haplotype of the U6b1 branch, also found in present day islanders,4 points to a significant continuity of the aboriginal maternal gene pool."[14]

"The [...] estimated age of the [U6b1] subgroup is around 6000 years,29 which predates the arrival of the first human settlers to the Islands.1"[14]

Medieval Warm Period[edit]

Northern hemisphere temperature reconstructions are for the past 2,000 years. Credit: Global Warming Art.
The figure shows the number of samples in time for the Central European oak chronology. Credit: Stand.
The center of the graph shows the time axis of conventionally dated historical events. Upper and lower coordinates show reconstructed time tables. The black triangles mark the phantom years. Credit: Hans-Ulrich Niemitz.

The Medieval Warm Period (MWP) dates from around 1150 to 750 b2k.

"A proof-of-concept self-calibrating chronology [based upon the Irish Oak chronology] clearly demonstrates that third order polynomials provide a series of statistical calibration curves that highlight lacunae in the samples."[15]

As indicated in the figures, the data used in the plots comes from radiocarbon dating of Irish Oaks.[16]

Gaps occur near the 1070s and 1470s b2k during the rising Δ14C values.

"The number of suitable samples of wood, which connect Antiquity and the Middle Ages is very small [shown in the third figure on the left]. But only a great number of samples would give certainty against error. For the period about 380 AD we have only 3, for the period about 720 AD only 4 suitable samples of wood (Hollstein 1980,11); usually 50 samples serve for dating."[17]

"The center of the graph [in the fourth image on the left] shows the time axis of conventionally dated historical events. Upper and lower coordinates show reconstructed time tables. The black triangles mark the phantom years."[17]

"In Frankfurt am Main archaeological excavations did not find any layer for the period between 650 and 910 AD."[17]

Early Middle Ages[edit]

Charlemagne's empire included most of modern France, Germany, the Low Countries, Austria and northern Italy. Credit: Hel-hama.
Baekdu Mountain—Baitoushan volcano (Paektu-san) is in the Changbai Mountains along the border of today's People's Republic of China and the Democratic People's Republic of Korea in Northeast Asia. Credit: NASA.
The approximate territories of dynasties includes the Jin (China). Credit: Ian Kiu.
Anglo-Saxon rulers wear Roman diadems. Credit: Gunnar Heinsohn.{{fairuse}}
Third order polynomials provide a series of statistical calibration curves that highlight lacunae in the carbon-14 samples. Credit: Gunnar Heinsohn.
The Δ14C values in a chronology can clearly be used to identify apparent catastrophic gaps and catastrophic rises in carbon-14. Credit: Gunnar Heinsohn.

The Early Middle Ages date from around 1,700 to 1,000 b2k.

There "appears to be evidence for a major outbreak of [Yersinia pestis]-plague peaking at the end of the “733–960 AD”4 time span."[18]

"At Birka, [near Stockholm, Sweden] “a sea level drop estimated up to 5 m has separated the lake from the nearby Baltic Sea of which it was once an inlet, and resulted in the harbour structures being located considerably inland as compared to their original situation”7"[18] From coin finds, Birka was abandoned around 960.[19]

"Truso [around Hansdorf near Elbing, situated on Lake Drużno near the Baltic Sea just east of the Vistula River] had undergone “isostatic adjustments (vertical crustal movements) [and] eustatic movements (fluctuations in the sea level due to climatic changes). / [The] in-fill consisted of a layer of black/brown sand with a high content of charcoal and ash”8."[18]

"In [Great Moravia] some 30 major fortresses, at least nine of them with stone churches, are utterly devastated: "The most recent burnt horizons give evidence for a gigantic annihilation that is roughly datable to the time of 900 CE“11. More recently, the demise of the Great Moravia Empire is dated into the early part of the 10th century"12."[18]

"Salzburg, [Austria]’s most important Early Medieval center, becomes “multiple times smaller”13 after a devastation in the 10th century when it resorts to primitive wooden houses for the few survivors.14"[18]

"“There was a rapid, sometimes catastrophic, collapse of many of the pre-existing tribal centers. These events were accompanied by the permanent or temporary depopulation of former areas of settlement. Within a short time new centers representative of the Piast state arose on new sites, thus beginning [in 966] the thousand-year history of the Polish nation and state.”15 In the future Piast realm “the local traditional territorial structure was undergoing deep and dramatic changes. Actions which resulted in the abandonment of some of the old strongholds and the building in their place of new ones were associated irrevocably with mass population movement, […] the emergence of new forms and zones of settlement“16. Previously unsettled areas “became densely settled and strongholds appeared; in the second quarter of the tenth century, these were built on a unified model in Bnin, Giecz, Gniezno, Grzybowo, Ostrów Lednicki, Poznan and Smarzewo“17."[18]

Archaeology "confirms that [Southern Baltic Ports] mysteriously “undergo discontinuity”18 in the 10th c. CE. The indigenous names for some of the deserted ports are not known to this very day."[18]

"In [Hungary], the Early Medieval town of Mosaburg with its strikingly Roman style stone Basilica of Zalavár-Récéskút (9th/10th c.) “had become ruinous by the Arpadian age. / Dateable finds from the multilayer cemetery could all be dated to the years from the second third or middle of the 9th century to the early 10th century, namely to its first few decades. / / Not just Mosaburg/Zalavár became depopulated, but also its surrounding area“19."[18]

Bulgaria "had the most splendid 9th/10th c. Slavic cities that – to the excavators‘ surprise – had been built in the 700 year earlier style of Rome’s 2nd/3rd c. CE period. Notwithstanding all their stone and brick massiveness, its metropolis, Pliska, comes to a terrible end: “A dark grey (most probably erosion) layer“20 (Henning 2007, 219; bold GH) had strangled that urban jewel for good [...] “Between the 11th and 15th c. CE, [Bulgaria’s; GH] Pliska basin was turned into a desert landscape“22."[18]

The Classic Maya "culture of the [Yucatan] collapsed around the same time25 (or [Tiwanaku/Bolivia] dated to ca. 1000 CE26)"[18]

“In Baghdad, the first half of the tenth century had a greater frequency of significant climate events and more intense cold than today, and probably also than the ninth century and the second half of the tenth century”27.[18]

"The eleventh century marked another turning-point in Rome's urban history. Excavations have revealed that this period [of the beginning of the High Middle Ages; GH] is characterized, in all strata, by a significant rise in paving levels, and the consequent obliteration of many structures and ancient ruins."28[18]

"The destruction of [Constantinople] must have taken place in the early 10th century when the Port of Theodosius was covered by mud."[18]

"After Octavian/Augustus (31 BCE – 14 CE) had, in 30 BCE, turned Egypt into an imperial province of the Roman Empire, Memphis continued to thrive. Suetonius (69-122) writes about the city in his Life of Titus (part XI of The Twelve Caesars)."[18]

"Egypt’s most famous export item, writing material made of sheets of papyrus (Cyperus papyrus or Nile grass) ceased to be cultivated around the 10th c. CE43: “All in all, we can say that after the 11th century no writing materials were produced from the papyrus plant"44. The plant had been virtually wiped out".[18]

"The collapse of the [Balhae Empire was established under the name Jin] (Chinese: Bohei), stretching from [North Korea via China to Manchuria], is conventionally dated to 926 CE. It should have been noticed in Japan. Yet, a chronicle from a Japanese temple that reports "white ash falling like snow" is currently dated to 946. A recent survey tries to tie the explosion of Changbaishan volcano (also called Mount Paektu) –– located in Southern China close to North Korea, i.e., within the borders of the Balhae Empire –– to the chronicle’s observation:"[18]

“The Millennium eruption has fascinated scientists and historians for decades because of its size, potential worldwide impacts. […] Its eruption in 946 was one of the most violent of the last two thousand years and is thought to have discharged around 100 cubic kilometers of ash and pumice into the atmosphere –– enough to bury the entire UK knee deep."46

"Eldgjá, has created the largest volcanic canyon in the world. It is some 40 km long, 270 m deep and 600 m wide. The eruption (dated to 934 or 939 CE) resulted in the most massive formation of flood basalt in historical time. 219 million tons of sulfur dioxide were blown into the atmosphere where they reacted with water and oxygen and became 450 million tons of sulfuric acid. These corrosive aerosols must have covered a large part of the Northern Hemisphere47."[18]

“Throughout the Mediterranean Basin, the Levant, Iran, and southeast Arabia, many valleys display two alluvial fills of which the older dates from about 30,000-10,000 yr BP and the younger from about A.D. 400-1850. […] The younger fill is well sorted and stratified and, as in Mexico, displays silt-clay depletion as well as iron loss when compared with the older fill deposits from which it is often derived. […]. The younger fill is seen in many widely separated areas to cover structures of Roman age as the period of deposition extended into Byzantine and even medieval times. […] The sections in W. Libya are typical in showing the younger fill deposits in channels eroded into the earlier fill. In most areas, the surface of the older fill was the usable land in Roman times. Greek, Roman, Byzantine, and medieval sherds are found in the younger fill, which also covers entire cities, notably, Olympia in Greece.49”.[18]

"Three hundred years [prior to 829 AD, 1171 b2k], it would seem, have left almost no trace in the ground. Truly, it would appear, that these years were indeed dark. Not only did men forget how to build in stone, they seem to have lost the capacity even of creating pottery; and the centuries in England that are generally designated Anglo-Saxon have left little or nothing even in this necessary domestic art. Pottery making does appear again in the tenth century."[20]

"The history of the Anglo-Saxon court is largely lost and unknown."[21]

"The Anglo-Saxons, from homelands [in Germany] where the necessary materials scarcely existed, probably had no tradition of building in stone."[22]

"Attempts to demonstrate conclusively significant continuity in specific urban or rural sites have run afoul of the near archaeological invisibility of post-Roman British society."[23]

"Whatever the discussion about the plough in Roman Britain, at least it is a discussion based on surviving models and parts of ploughs, whereas virtually no such evidence exists for the Period A.D. 500-900 in England. [...] In contrast to the field system of the 500 years or so on either side of the beginning of our era, little evidence has survived in the ground for the next half millennium."[24]

"The Saxons tended to avoid Roman sites possibly because they used different farming methods."[25]

"[We] learn from Prof. Fleming [2016] that Roman conquerors introduced many — perhaps as many as 50 — new and valuable food plants and animals (such as the donkey) to its province of Britannia, where these crops were successfully cultivated for some 300 years. Among the foodstuffs that Roman civilization brought to Britain are walnuts, carrots, broad beans, grapes, beets, cabbage, leeks, turnips, parsnips, cucumbers, cherries, plums, peaches, almonds, chestnuts, pears, lettuce, celery, white mustard, mint, einkorn, millet, and many more. These valuable plants took root in Britain and so did Roman horticulture. British gardens produced a bounty of tasty and nourishing foods. [...] Following the collapse of Roman rule after 400 AD, almost all of these food plants vanished from Britain, as did Roman horticulture itself. Post-Roman Britons [...] suddenly went from gardening to foraging. Even Roman water mills vanished from British streams. But similar mills came back in large numbers in the 10th and 11th centuries, along with Roman food plants and farming techniques."[26]

"After all, Alfred the Great (871-899) as well as other Anglo-Saxon rulers take pride in wearing a Roman diadem and/or a Roman chlamys. Offa of Mercia (757-796), e.g., issued a coin that shows him "in the style of a Roman emperor with an imperial diadem in his hair." [See the coin images third down on the right.]"[27]

Embossed "clay vessels attributed to Angle-Saxons follow the pattern of Anglo-Saxon coinage because they, too, point to a “deliberate imitation of Roman silver or glass ware” of the 1st/2nd century (Myres 1969, 30)."[27]

There are "the rich Roman strata in Anglo-Saxon capitals, like Alfred’s (Venta Belgarum) (Winchester)".[27]

For "authors of the 9th century AD, like Harun ibn Yahya, a Syrian traveler writing in 866, there is no doubt that Britain (Bartīniyah) is the “the last of the lands of the Greeks [Rum/Romans], and there is no civilization beyond them” (Green 2016)."[27]

The unknown author of "the Persian Hudud al-'Alam (982 AD) in which Britain (al-Baritiniya) "is the last land of Rum [Rome] on the coast of the Ocean" (Watson 2001)."[27]

"Stratigraphically, there is no problem with such a statement since—between the year 1 and the 930s AD—there are only enough building strata with streets, residential quarters, latrines, aqueducts etc. for a period of some 230 Roman years in Britain. Since they are contingent with the High Middle Ages of the 10th century AD, these massive Roman strata cannot help but belong to the 8th-10th century period, whatever the textbook chronology requires."[27]

"Everything we know from Early Medieval texts pertaining to 8th/9th century Anglo-Saxons confirms that they thrived in a classical culture, in a genuine Roman environment. That makes sense only when the hard evidence of the period dated 1st to 3rd century receives the 8th-10th century dates of its stratigraphic location immediately before the onset of the High Middle in the 10th century AD:"[27]

"Anglo-Saxon England was peopled with learned men and women, highly educated in Latin and English, who circulated and read Classical texts as well as composing their own. [...] There survives a large corpus of literature showing a deep understanding of the physical and the metaphysical [...]. Charters show that laws, administration and learning were not just for an educated elite. Laypeople were involved in the ceremonies and had documents created for them: land grants, wills, dispute settlements. [...] The coinage across the period shows an elaborate and controlled economy. This was a well-managed society not given to lawlessness and chaos. [...] They drew influence from Classical art and developed their own distinct artistic styles. [...] They had trade routes stretching across the known world and were familiar with and able to buy spices, pigments and cloth from thousands of miles away (many manuscripts use a blue pigment made from lapis lazuli, brought from Afghanistan. [...] The English church was in close contact with Rome, with correspondence travelling back and forth; new bishops would be sent to Rome to collect the pallium; and King Alfred visited the city as a young boy."[28]

At left is an attempt to correlate the change in 14C with time before 1950. The different data sets are shown with different colored third order polynomial fits to each data set.

"The Δ14C values in a chronology can clearly be used to identify catastrophic gaps and catastrophic rises in carbon-14."[29]

The first four gaps have a jump up in 14C with a fairly quick return to the calibration curve shown in the figure on the second left. However, from about 2000 b2k there is a steady rise in the Δ14C values.

Imperial Antiquity[edit]

Pile from The Strood, in Roman cut (223 cm high), re-dated from the late 1st c. AD to the 7th/8th c. AD. Roman lead covered box with Roman glass urn (100-120 CE) from Mersea’s Roman barrow. Credit: Gunnar Heinsohn.{{fairuse}}
In Sainte-Colombe, near Lyon (France), a whole suburb of ancient Roman Vienne is uncovered during preventive excavation on a projected construction site. Credit: Benjamin Clément.{{fairuse}}

"Felix Romuliana is regarded as an ideal embodiment of a purely Late Antique (4th-6th c.) city in the Roman province of Moesia (today's Gamzigrad in Serbia), because in the earlier Imperial Antiquity of the 1st to early 3rd centuries there appears to be simply nothing at all in that splendid urban space erected around 305 CE for Emperor Galerius (293-311 CE)."[29]

"Felix Romuliana [was] erected around 305 CE for Emperor Galerius (293-311 CE)."[29]

"Felix Romuliana can boast a rich urban history up to the end of the 1st c. BCE"[29]

It "has “a long settlement continuity from the Neolithic period over the Bronze Age and the Iron Age, the Late Antiquity into the Middle Ages”2 (DAIST 2013, see already Petkovic 2011a, 40)."[29]

Between "1 and 1,000 CE there are only some 300 years with building strata in Felix Romuliana."[29]

"Just between the 1st and 3rd c. CE the city’s evolution is totally and mysteriously stalled."[29]

"Only during the Late Antique period (3rd to 6th c.), which appears to emerge out of thin air, does evolution pick up again with “different construction and expansion phases”3 (DAIST 2013). Since the German-Serbian excavations (2004 to 2012), one even knows “the localization of a necropolis belonging to the palace and its succession of settlements [up to the 6th c.], whose evidently dense occupation indicates a large population”4 (DAIST 2013)."[29]

"For the more than 400 years between the late 6th and early 11th centuries, there was, however, no building evolution in the emergency accommodations. There are no archeological remains for some 400 years of use. There is substantial evidence for only a few decades, or even less. Those 400 years were written into the excavation report to meet a textbook chronology that is not understood but deeply venerated."[29]

"Imperial Antiquity [apparently] did not leave any buildings [in Felix Romuliana] between Augustus (31 BCE - 14 CE) and Severus Alexander (222-235 CE)."[29]

"Since Marcus Licinius Crassus (consul in 30 BCE) had already conquered Moesia in 29 BCE, it remains an enigma why suddenly the fertile area of Felix Romuliana, which had been in full use since the Neolithic period, was suddenly abandoned."[29]

"Galerius’s Late Antique palace complex in Felix Romuliana was built by Legio V Macedonica (the bull and eagle were its symbol), a Roman legion that had been set up in 43 BCE by Octavian and Consul Gaius Vibius Panza Caetronianus (who fell in 43 BCE against Mark Antony)."[29]

"It is indisputable that in 6 CE the legion was in the province of Moesia, with sufficient time to build something. It is also known that right there, in 33/34 CE (now under Emperor Tiberius), the legion did road-construction along the Danube (Clauss EDCS, 1649)."[29]

"The Legio V Macedonica also participates in the construction of the gigantic Danube Bridge (1135 m; 103-105 CE) under Emperor Trajan (98-117). All this happens in close vicinity of Felix Romuliana, where the legion supposedly did not work before the 3rd/4th c. CE."[29]

"Also, for around a quarter of a millennium (1st-3rd c. CE), there are no Aeolian layers in Felix Romuliana with vegetation or small animal remains, etc., which are to be expected if a city lies fallow for such a long time."[29]

In Felix Romuliana, "the construction [...] is [...] Imperial Antique (1st-3rd c.), and sometimes even late Hellenistic, [in] appearance."[29]

"Felix Romuliana still amazes [...] by its absence of Christian traces, despite its cultural proximity to the Greek part of the empire where Christianity had been in full development since the 1st c. CE. During the governorship (111-113 CE) of Pliny the Younger (61/61-113 CE) in Pontus-Bithynia, Christianity was, e.g., no longer stoppable. It had “spread not only to the cities but also to the villages and farms” of Asia Minor (Pliny: Letters 10:96)."[29]

"Many [British] building sequences appear to terminate in the 2nd and 3rd centuries [1900-1700 b2k]. [...] The latest Roman levels are sealed by deposits of dark coloured loam, commonly called the 'dark earth' (formerly 'black earth'). In the London area the 'dark earth' generally appears as a dark grey, rather silty loam with various inclusions, especially building material. The deposit is usually without stratification and homogeneous in appearance, It can be one meter or more in thickness. [...] The evidence suggests that truncation of late Roman stratification is linked to the process of 'dark earth' formation."[30]

“Parts [of Londinium] / were already covered by a horizon of dark silts (often described as 'dark earth') / Land was converted to arable and pastoral use or abandoned entirely. The dark earth may have started forming in the 3rd century."[31]

"[Roman sites and buildings dated to Britain’s Late Antiquity, i.e., to the 5th/6th century AD] never have 1st-3rd century building strata with streets, residential quarters, latrines, aqueducts etc. that are—after the Crisis of the Third Century—built over by new streets, residential quarters, latrines, aqueducts etc. reflecting new styles and technologies. At best, there are alterations of 1st-3rd c. structures that retain the style of the 1st-3rd century AD. An example may be provided by the small basilica in the 2nd century forum of Lindum Colonia (Lincoln) that is currently dated 5th/6th c. but stylistically would perfectly fit the late 2nd early 3rd century AD. The situation is comparable for pottery dated to Late Antiquity that cannot be tied to settlements. E.g., a "small later Roman pottery assemblage" from Mucking is dated "to a period without major occupation" (Lucy 2016)."[27]

"The Strood causeway to Mersea Island was thought to be Roman, built in the 1st c. AD. It leads to Mersea’s Roman burial mound (barrow) where a typical Roman lead covered box with a no less typical Roman glass urn (tentatively dated between 100 and 120 AD) was retrieved [in the image on the right]. Oak piles in typical Roman cut were discovered in 1978. Up to the 1980s it was never doubted that the dam was built by Romans in the 1st c. AD to reach their settlements on the Island."[27]

"Scientific dating methods have been applied to some substantial oak piles discovered beneath the Strood in 1978, when a water-main was being laid. They indicate that the structure was probably built between A.D. 684 and 702. The piles were discovered at the south end of the causeway where the trench was at its deepest—they were about 1.6m below the present ground level and were sealed by a series of road surfaces. Seven piles were recovered and samples were submitted to Harwell laboratory for radiocarbon dating to get a rough idea of the date. Samples from four of the piles were sent to the University of Sheffield for tree ring dating (dendrochronology). The remaining three piles are now in the Colchester and Essex Museum. The dating of the construction to AD 684 to 702 was regarded as conclusive."[32]

"From a stratigraphic viewpoint there is nothing wrong with the term "Saxon date," if Saxons and Romans lived side by side from the 1st century BC to the 3rd century AD. Since archaeologically this period is contingent with the High Middle Ages of the 10th century AD—there are no building strata with residential quarters etc. in between—, its dates cannot help but move into the 7th to 10th century AD time span."[27]

"[2nd/3rd century AD] Ptolemy’s PHA-BIRABON is identified with Bremen though there are other candidates, too. Rich evidence for Roman period. Settlements of 1st century are continued."[27]

"[1st century AD] Saxon Chauci create rich building evidence. 50 m long houses (three aisles) with integrated stables are found all over the city and many suburbs; blacksmith shops; charcoal kiln technology etc."[27]

"A succession of fires allowed the preservation of all the elements in place, when the inhabitants ran away from the catatrophe, transforming the area into a real little Pompei of Vienne [second image down on the right]."[33]

"The fire brought the top floor, the roof and the terrasse of a sumptuous dwelling to collapse, both caved in floors being preserved, with the furniture left in place. The house, dating from the the second half of the first century and surrounded by gardens, was baptised "House of the Bacchae" because of a mosaic with a cortege of bacchae surrounding a Bacchus."[33]

"With many others, a superb mosaic preserved in its near-totality in the "House of Thalia and Pan" has been lifted with much precaution earlier this week, to be restored at the ateliers of the gallo-roman museum of Saint-Romain-en-Gal."[33]

"The Roman city of Vienne, in Southeast France, was at a crossroads of communications, between the Rhône River and the Roman province of Gallia Narbonensis, on a "highway" connecting Lyon, the capital of Gaul, to the city of Arles. Another axis of circulation had most probably preceded it and the excavations «provide also an exceptional opportunity to analyze the anterior states of the Roman road of Gallia Narbonensis, or Transalpine Gaul, "one of the most important of this time.""[33]

"Besides the two luxurious houses, the neighborhood included shops dedicated to metalwork, food stores and other artisanal production; a warehouse full of jugs for wine; and a hydraulic network that allows for cleaning and drainage. The neighborhood appeared to be built around a market square, apparently the largest of its kind to be discovered in France."[33]

Classical history[edit]

The classical history period dates from around 2,000 to 1,000 b2k.

"There is absolutely no justification for believing there to have been a historical figure of the fifth or sixth century named Arthur who is the basis for all later legends. / There is, at present, no cogent reason to think that there was a historical post-Roman Arthur."[34]

Early history[edit]

Main sources: History/Early and Early history
The contemporaneity of Rome’s Imperial period textbook-dated to the 1st-3rd century AD with the Early Middle Ages (8th-10th century AD) is confirmed for Poland. Credit: Gunnar Heinsohn.{{fairuse}}

The early history period dates from around 3,000 to 2,000 b2k.

The "Late La Tène time span [is] between the conquests of 55 BC and 54 BC [2055 and 2054 b2k] under Julius Caesar (100-44 BC) and the time of Christ. In the rare cases where pottery and tableware are attributed to Saxons of the 4th/5th c. AD, "astonishingly La Tène art styles [more than 300 years out of fashion] re-emerge as dominant in the northern and western zone." (Hines 1996, 260)"[27]

"Stamped pottery has had a long and varied history in Britain. There have been periods when it flourished and periods when it almost totally disappeared. This article considers two variations of the rosette motif (A 5) and their fortunes from the late Iron Age to the Early Saxon period. [...] The La Tène ring stamps [which end in the 1st century BC; GH ] are found in a range of designs, from the simple negative ring (= AASPS Classification A 1bi) to four concentric negative rings (= AASPS A 2di). These motifs are also found in the early Roman period [1st century AD; GH]. [...] The 'dot rosettes' (= AASPS A 9di) on bowls from the [Late Latène] Hunsbury hill-fort (Fell 1937) use the same sort of technique as the dimple decoration on 4th-century 'Romano-Saxon' wares."[35](bold: GH)

In "Šarnjaka kod Šemovca (Dalmatia/Croatia), e.g., contain 700-year-older La Tène and Imperial period items (1st century BC to 3rd century AD) [...]:"[27]

"A large dugout house (SU 9) was discovered in the course of the investigation in 2006. Its dimensions are 4.8 by 2.1 metres, with a depth of 34 centimetres, and an east-west orientation, deviating slightly along the NE-SW line. It contained numerous sherds of Early Medieval pottery, two fragments of glass, and a small iron spike. Three sherds of Roman pottery [1st-3rd c. CE; GH] and ten sherds of La Tène pottery [ending 1st c. BCE; GH] were also recovered from the house."[36](bold: GH)

"The contemporaneity of Rome’s Imperial period textbook-dated to the 1st-3rd century AD with the Early Middle Ages (8th-10th century AD) is also confirmed for Poland [in the stratigraphic table above]. There, too, Late Latène (conventionally ending 1st c. BC) immediately precedes the Early Medieval period of the 8th-10th c. CE."[27]

"In [the Roman Empire] capital cities, Rome and Constantinople (Heinsohn 2016) [they] build residential quarters, streets, latrines, aqueducts, ports etc. only in one of the three periods—Imperial Antiquity, Late Antiquity, and Early Middle Ages—dated between 1 and 930s AD. In Rome, they are assigned to Imperial Antiquity (1st-3rd c.); in Constantinople, to Late Antiquity (4th-6th c.)."[27]

"Roman churches of Late Antiquity and the Early Middle Ages [...] would suffice to confirm the existence of these two periods. The churches are there. However, we never find churches of the 8th or 9th century superimposed on churches of the 4th or 5th century that, in turn, are superimposed on pagan basilicas of the 1st or 2nd century. They all share the same stratigraphic level of the 1st and 2nd/early 3rd century. Moreover, the ground plans of the 4th/5th—as well as the 8th/9th—century churches slavishly repeat the ground plans of 1st/2nd century basilicas, as already pointed out 75 years ago by Richard Krautheimer (1897-1994). It is this period of Imperial Antiquity (with its internal evolution from the 1st to 3rd centuries) that alone builds the residential quarters, latrines, streets, and aqueducts so desperately looked for in Late Antiquity and the Early Middle Ages. Thus, Rome does not have more stratigraphy for the first millennium AD than England or Poland."[27]

"Germanic tribes, not only Anglo-Saxons and Frisians but also Franks, had been competing with Rome for the conquest of the British Isles since the 1st century BC".[27]

"1st century BC "Astonishingly LA TÈNE art styles" (Hines 1996) dominate pottery of SAXONS [and] Powerful LA TÈNE Celts with King Aththe-Domarous of Camulodunum [is the] greatest ruler."[27]

"Saxons begin their attack on Britain as early as the 1st century BC. They compete with the Romans, who may have employed Germanic Franks as auxiliary forces. The Saxons invade from the East, i.e., from the German Bight."[27]

From "the stratigraphy of the Saxon homeland, located around Bremen/Weser inside today’s Lower Saxony [it] is mainly inhabited by Chauci and Bructeri [...] Saxon tribes that are [...] at war with the Romans in the time of Augustus (31 BC-14 AD) and Aththe-Domaros of Camulodunum (Aθθe-Domaros, also read as Addedom-Arus; c. 15-5 BC)."[27]

"Jastorf (La Tène) culture [3rd to 1st century BC] with bronze and iron technology. Rich building evidence in downtown Bremen."[27]

Iron Age[edit]

Main sources: History/Iron Age and Iron Age

The iron age history period began between 3,200 and 2,100 b2k.

"After a typological analysis and a cross-dating of bronze artifacts recovered north and south of the Alps, the Roman school of Peroni set the 1020 [3020 b2k] as the beginning of the Iron Age (De Marinis 2005, p. 21; Pacciarelli 2005). The date is in agreement with the chronology supported by Lothar Sperber (Sperber 1987). The recent works of Nijboer based on the analysis of radiocarbon dates from Latial contexts agree with this high chronology (Nijboer et al. 1999-2000; Nijboer & Van der Plicht 2008; Van der Plicht et al. 2009)."[37]

Subatlantic period[edit]

The archaeological site of Tzintzuntzan is the capital of the Tarascan state. Credit: Hajor.{{free media}}

The "calibration of radiocarbon dates at approximately 2500-2450 BP [2500-2450 b2k] is problematic due to a "plateau" (known as the "Hallstatt-plateau") in the calibration curve [...] A decrease in solar activity caused an increase in production of 14C, and thus a sharp rise in Δ 14C, beginning at approximately 850 cal (calendar years) BC [...] Between approximately 760 and 420 cal BC (corresponding to 2500-2425 BP [2500-2425 b2k]), the concentration of 14C returned to "normal" values."[38]

"The main discontinuity in the climatic condition during the Bronze Age and Iron Age transition can be identified in the boundary from Subatlantic to Subboreal (2800-2500 BP; 996/914-766/551 2σ cal. BC). Such period “has globally been identified as a time of marked climatic change. Stratigraphical, paleobotanical and archaeological evidence point to a change from a dry and warm to a more humid and cool climate in central and northwestern Europe” (Tinner et al. 2003). The climatic deterioration which characterizes this chronological range is directly responsible of the plateau in the calibration curve between 760 and 420 BC (2500-2425 BP) (see chapter The climatic oscillation around 2700 BP (896/813 2σ cal. BC) has been detected worldwide. Van Geel et al. (1996, 1998) and Speranza et al. (2002) found an abrupt shift around 850 BC in changing species composition of peat-forming mosses in European Holocene raised bog deposits. The change was from mosses preferring warm conditions to those preferring colder and wetter environments. Archaeological evidence supports such a change. Bronze Age settlements located in the Netherlands were suddenly abandoned after a long period of occupation which last around one millennium (Dergachev et al. 2004). Other studies confirmed the climatic discontinuity; Schilman et al. (2001) studied δ18O and δ13C in deposits from the southeastern Mediterranean, off Israel, and recognized the presence of two humid events in the time ranges of 3500-3000 BP (1884/1772-1263/1215 2σ cal. BC) and 1700-1000 BP (332/389-1016/1030 2σ cal. AD) and a period of arid conditions between 3000 and 1700 BP (1263/1215 2σ cal. BC- 332/389 2σ cal. AD). Barber and Langdon (2001) identified three main long climatic deteriorations 2900-2830 BP (1119/1037-1012/934 2σ cal. BC), 2630-2590 BP (810/797-801/788 2σ cal. BC) and 1550-1400 BP (430/549-637/658 2σ cal. AD) through the analysis of plant macrofossils in a peat deposit of Walton Moss located in Northern England and comparing such data with a temperature reconstruction based on chironomids in the sediment of a nearby lake."[37]

"Hallstatt disaster"[edit]

"Hallstatt disaster" refers to the plateau located in the calibration curve between 760 and 420 cal BC (2500-2425 BP). Credit: Giacomo Capuzzo.{{fairuse}}

"With the term “Hallstatt disaster” the scientific community refers to the plateau located in the calibration curve between 760 and 420 cal BC (2500-2425 BP) [the graph on the right]. The term is due to the chronological analogy to the Hallstatt society which developed in the late Bronze Age and the beginning of Iron Age in the northern part of the Alps (Austria). The flat shape of the calibration curve in this time-span is the result of the decrease, and hence the return to normal values, of the percentage of 14C after a period characterized by an increase in the concentration of radiocarbon in the atmosphere, which is mirrored in the calibration curve as a sharp descent between 850 and 760 BC (2700-2450 BP) (Speranza et al. 2000). As asserted by many authors (Van Geel et al. 1996; Van Geel et al. 1998; Tinner et al. 2003; Dergachev et al. 2004; Van der Plicht et al. 2004; Swindles et al. 2007) the chronological range 850-760 BC is characterized by an abrupt increase of the amount of 14C in the atmosphere and it corresponds chronologically to the boundary from Subatlantic to Subboreal (2800-2500 BP), which “has globally been identified as a time of marked climatic change. Stratigraphical, paleobotanical and archaeological evidence point to a change from a dry and warm to a more humid and cool climate in central and northwestern Europe” (Tinner et al. 2003)."[37]

Subboreal period[edit]

The "period around 850-760 BC [2850-2760 b2k], characterised by a decrease in solar activity and a sharp increase of Δ 14C [...] the local vegetation succession, in relation to the changes in atmospheric radiocarbon content, shows additional evidence for solar forcing of climate change at the Subboreal - Subatlantic transition."[38]

The "apparent reality of social equality testified by LBA urnfield burials can be definitely discarded at the Iron Age transition by the archaeological excavation at the Hexenbergle site, near Wehringen in Bayern (Germany). The monumental radiocarbon dated mound with a cremation burial of an adult male accompanied by a great amount of objects, including a sword, elements decorating a wagon and an extensive set of painted pottery (Hennig 1995). The dendrochronological date obtained on the wagon (778±5BC) provides a precise temporal location for an upper-class deceased with sepulchral paraphernalia in the Hallstatt period (Friedrich & Henning 1995, 1996)."[37]

Bronze Age[edit]

Main sources: History/Bronze Age and Bronze Age

The bronze age history period began between 5,300 and 2,600 b2k.

"From a cuneiform tablet of a later origin, King Assurbanipal, conventionally80 assigned to the 7th century B.P. [2600 b2k], boasts that he "finds pleasure in reading the stones of the time from before the flood."81 Indeed, his library, unearthed in Nineveh, revealed archaic written tablets which date back to the beginning of the Bronze Age (conventionally dated between 3100 and 2750 B.P.),82 which therefore stem from a period upon which more flood catastrophes would follow".[39]

"In those times [after the flood of Deucalion] the kings of Greece initiated the worship for the pagan gods, which were to rekindle in annually renewed festivities the memory of the Flood and the salvation of the people, as well as the difficulties of the life of those who were at first resettled into the mountains, then into the plains."83[39]

"The first (purely typological) studies on Early Bronze Age (EBA) assemblages in the Jordan Valley settled on the turn of the 4th/3rd millennium BC [mark] the beginnings of the earliest Bronze Age culture (Albright 1932; Mallon 1932)."[40]

"In the Chalcolithic/earliest Bronze Age I period (c. 4500±3000 cal BC), copper was mined in open galleries from the massive brown sandstone deposit, which consisted of thick layers of the copper carbonate malachite and chalcocite, a copper sulphide."[41]

Late Bronze Ages[edit]

The Late Bronze Ages begin about 3550 b2k and end about 2900 b2k.

The "abandonment of lakeshore Swiss pile-dwellings has been dated to around 1520 BC [3520 b2k] (Menotti 2001). [Slightly] "later in time episodes of flood events and lake-level highstand at 3100 BP (1415/1311 2σ cal. BC) and 2800 BP (996/914 2σ cal. BC) have been recently detected in the Southern Alps, in the sediment cores extracted from the Lake Ledro, located in the province of Trento (Joannin et al. 2014)."[37]

Radiocarbon "data indicate that the New Kingdom of Egypt started between 1570 and 1544 B.C.E [3270 - 3544 b2k]."[42]

Middle Bronze Ages[edit]

Fresco of The Fisherman is from Akrotiri, Santorini, Greece at a height of 1.10 m. Credit: Yann Forget.{{free media}}

The Middle Bronze Ages begin about 4100 b2k and end about 3550 b2k.

The Fisherman is a Minoan Bronze Age fresco from Akrotiri, on the Aegean island of Santorini (classically Thera), dated to the Neo-Palatial period (c. 1640–1600 BC). The settlement of Akrotiri was buried in volcanic ash (dated by radiocarbon dating to c. 1627 BC [c. 3626 b2k]) by the Minoan eruption on the island, which preserved many Minoan frescoes like this.

High precision radiocarbon dating of 18 samples from Jericho, including six samples of carbonized cereal from the burnt stratum, gave the age of the strata as 1562 BC, with a margin of error of 38 years [3562 ± 38 b2k].[43]

"In Berber, the name "Siwa" means "prey bird and protector of sun god Amon-Ra." It is derived from the name of the indigenous inhabitants, Tiswan, who speak Tassiwit, a dialect related to Berber spoken in the Sahara and North Africa. Siwa is one of the most arid oases in western Egypt near the border of Libya at a depression of 18 meters below sea level, and it is 300 kilometers southwest of the Mediterranean port city of Marsa Matruh. The oasis is 82 kilometers long and has a width ranging between 2 and 20 kilometers. The oasis was occupied since Paleolithic and Neolithic times. It was first mentioned more than 2,500 years ago in the records of the pharaohs of the Middle and New Kingdoms (2050-1800 B.C. and 1570-1090 B.C.)"[44]

Early Bronze Ages[edit]

The Early Bronze Ages begin about 5300 b2k and end about 4100 b2k. A logboat from Ireland (Inch Abbey, Co. Down) was dendrochronology dated to 4140 b2k.[7]

A logboat made from alder from Denmark (Verup l) designated K-4098B was radiocarbon dated to 4220 ± 75 b2k.[7]

A logboat from Ireland (Ballygowan, Co. AmJagh) designated GrN-20550 was radiocarbon dated to 4660 ± 40 b2k.[7]

Atlantic period[edit]

Hieroglyphics found at El-Khawy in Egypt show two storks, back to back, with an ibis between them (left), as well as a bull's head (right). Credit: John Darnell, Yale University.{{fairuse}}
A little elephant is shown inside an adult elephant, an indication that the animal is pregnant. Credit: John Darnell, Yale University.{{fairuse}}

The "Atlantic period [is] 4.6–6 ka [4,600-6,000 b2k]."[45]

"This newly discovered rock art site of El-Khawy preserves some of the earliest — and largest — signs from the formative stages of the hieroglyphic script [such as the back-to-back storks in the image on the right dating back around 5,200 years] and provides evidence for how the ancient Egyptians invented their unique writing system."[46]

Another "carving, [shows] a herd of elephants, created sometime between 4000 B.C. and 3500 B.C. One of the adult elephants in the scene was drawn with a little elephant inside its body [in the image on the right] — an incredibly rare way of representing a pregnant female animal."[46]

The "reign of Djoser in the Old Kingdom started between 2691 and 2625 B.C.E."[42]

"The last remains of the American ice sheet disappeared about 6000 years ago [6,000 b2k]".[47]

Copper Age[edit]

Main sources: History/Copper Age and Copper Age

The copper age history period began from 6990 b2k to about 5300 b2k.

"An archaeological site in [Serbia] has shown its metal. This ancient settlement contains the oldest securely dated evidence of copper making, from 7,000 years ago, and suggests that copper smelting may been invented in separate parts of Asia and Europe at that time rather than spreading from a single source."[48]

"Until now, experts said that only stone was used in the Stone Age and that the Copper Age came a bit later. Our finds, however, confirm that metal was used some 500 to 800 years earlier, [which indicates that humans were using metals in Europe by 7,500 years ago]."[49]

Ancient history[edit]

The ancient history period dates from around 8,000 to 3,000 b2k.

The "Scandinavian one 2000 years earlier [8,000 b2k]."[47]

Boreal transition[edit]

"In recent years, the German oak chronology has been extended to 7938 BC [9938 b2k]. For earlier intervals, tree-ring chronologies must be based on pine, because oak re-emigrated to central Europe at the Preboreal/Boreal transition, at about 8000 BC [10,000 b2k]."[50]

"The age range, 7145-7875 BC [9145-9875 b2k], is represented by the oak chronology, 'Main9'."[50]

"The age range, 7833-9439 BC [9833-11439 b2k], is covered by the 1784-yr pine chronology."[50]

Pre-Boreal transition[edit]

The last glaciation appears to have a gradual decline ending about 12,000 b2k. This may have been the end of the Pre-Boreal transition.

"About 9000 years ago the temperature in Greenland culminated at 4°C warmer than today. Since then it has become slowly cooler with only one dramatic change of climate. This happened 8250 years ago [...]. In an otherwise warm period the temperature fell 7°C within a decade, and it took 300 years to re-establish the warm climate. This event has also been demonstrated in European wooden ring series and in European bogs."[47]

"The last remains of the American ice sheet disappeared about 6000 years ago [6,000 b2k], the Scandinavian one 2000 years earlier [8,000 b2k]."[47]

Younger Dryas[edit]

The "Alleröd/Younger Dryas transition [occurred] some 11,000 years ago [11,000 b2k]."[51]

From "stable isotope measurements of the pine series (Becker, Kromer & Trimborn 1991) [...] an age of 11,050 cal BP for the beginning of climatic amelioration in central Europe [is obtained]."[50]


Main sources: History/Holocene and Holocene

The Holocene starts at ~11,700 b2k and extends to the present.

Allerød Oscillation[edit]

The "Allerød Chronozone, 11,800 to 11,000 years ago".[51]


Main sources: History/Neolithic and Neolithic

The base of the Neolithic is approximated to 12,200 b2k.


The mesolithic period dates from around 13,000 to 8,500 b2k.

"The Siwan people are mostly Berbers, the indigenous people who once roamed the North African coast between Tunisia and Morocco. They inhabited the area as early as 10,000 B.C., first moving toward the coast but later inland as conquering powers pushed them to take refuge in the desert."[44]


The paleolithic period dates from around 2.6 x 106 b2k to the end of the Pleistocene around 12,000 b2k.

Older Dryas[edit]

Comparison of the GRIP ice core with cores from the Cariaco Basin shows the Older Dryas. Credit: Konrad A Hughes, Jonathan T. Overpeck, Larry C. Peterson & Susan Trumbore.

"Older Dryas [...] events [occurred about 13,400 b2k]".[52]

Bølling Oscillation[edit]

The "intra-Bølling cold period [IBCP is a century-scale cold event and the] Bølling warming [occurs] at 14600 cal [calendar years, ~ b2k] BP (12700 14C BP)".[53]

Oldest Dryas[edit]

"During the Late Weichselian glacial maximum (20-15 ka BP) the overriding of ice streams eventually lead to strong glaciotectonic displacement of Late Pleistocene and pre-Quaternary deposits and to deposition of till."[54]

The "minimum point of GIS-2b (Greenland Stadial sub-event b) [is] identified by Bjork et al. 1998 [at] 17.687 ka BP".[55]

Meiendorf Interstadial[edit]

Jylland stade[edit]

"After c. 22 ka BP [which is] during the Jylland stade (Houmark-Nielsen 1989)".[54]

GIS 2[edit]

The weak interstadial corresponding to GIS 2 occurred about 23.2 kyr B.P.[56]

"GIS 2 (start) 21.556 [to] GIS 2 (end) 21.407 ka BP".[55]

Heinrich Event 2 (H2) extends "22-25.62 ka BP".[55]


"Stadial Duration 3.781 ka".[55]

GIS 3[edit]

The stronger GIS 3 interstadial occurred about 27.6 kyr B.P.[56]

Heinrich Event 3 (H3) "occurs at 26.74 ka BP, coincident with the start of the transition into GIS 4."[55]

"GIS 3 (start) 25.571 [to] GIS 3 (end) 25.337 ka BP".[55]


"Stadial duration 0.768 ka".[55]

Møn interstadial[edit]

The Møn interstadial corresponds to GIS 4.[56]

"GIS 4 (start) 26.627 [to] GIS 4 (end) 26.339 ka BP".[55]

Klintholm advance[edit]

This advance occurred after the Møn and ended with GIS 6.[56]

"Stadial duration 2.899 ka".[55]

GIS 5[edit]

GIS 5 interstadial occurred during the Klintholm advance about 33.5 kyr B.P.[56]

"GIS 5 (start) 30.013 [to] GIS 5 (end) 29.526 ka BP".[55]


Stadial duration 0.836 ka""[55]

Ålesund Interstadial[edit]

The Ålesund interstadial began with GIS 6 and ended after GIS 8.[56]

"GIS 6 (start) 31.218 [to] GIS 6 (end) 30.849 ka BP".[55]


"Stadial duration 0.932 ka".[55]

GIS 7 interstadial[edit]

"GIS 7 (start) 32.896 [to] GIS 7 (end) 32.15 ka BP".[55]


"Stadial duration 0.642 ka".[55]

Huneborg interstadial[edit]

The Huneborg interstadial is a Greenland interstadial dating 36.5-38.5 kyr B.P. GIS 8.[56]

The Denekamp interstadial corresponds to the Huneborg interstadial.

"GIS 8 (start) 35.716 [to] GIS 8 (end) 33.977 ka BP".[55]

Heinrich Event 4 "33-39.93 ka BP".[55]

Hengelo interstadial[edit]

The Hengelo interstadial [is] > 35 ka BP".[54]

The "Hengelo Interstadial [is] (38–36 ka ago)."[57]

"GIS 9 (end) 37.461 ka BP".[55]

Hasselo stadial[edit]

The "Hasselo stadial [is] at approximately 40-38,500 14C years B.P. (Van Huissteden, 1990)."[58]

The "Hasselo Stadial [is a glacial advance] (44–39 ka ago)".[57]

Moershoofd interstadial[edit]

These three maps show a succession of artefacts in western and southern Europe. Credit: Catherine Brahic.

The Moershoofd interstadial has a 14C date of 44-46 kyr B.P. and corresponds to GIS 12 at 45-47 kyr B.P.[56]

Another likely stadial[edit]

Glinde interstadial[edit]

The Glinde interstadial has a 14C date of 48-50 kyr B.P. and corresponds to GIS ?13/14 with a GIS age of 49-54.5 kyr B.P.[56]

Ebersdorf Stadial[edit]

"Genetics suggests Neanderthal numbers dropped sharply around 50,000 years ago. This coincides with a sudden cold snap, hinting climate struck the first blow."[59]

This corresponds to the Skjonghelleren Glaciation of Scandinavia where ice crosses the North Sea between 50-40 ka BP.

Oerel interstadial[edit]

The Oerel interstadial has a 14C date of 53-58 kyr B.P. and corresponds to GIS 15/16 with a GIS age of 56-59 kyr B.P.[56]

Karmøy stadial[edit]

The Karmøy stadial begins in the high mountains of Norway about 60 kyr B.P. and expands to the outer coast by 58 kyr B.P.[56]

The Schalkholz Stadial in North Germany is equivalent.

Odderade interstadial[edit]

The Odderade interstadial has a 14C date of 61-72 kyr B.P. and corresponds to GIS 21.[56]

Rederstall Stadial[edit]


Main sources: History/Cenozoic and Cenozoic

The Cretaceous/Cenozoic boundary occurs at 65.0 ± 0.1 Ma (million years ago).[60]

Brørup interstadial[edit]

The "Brørup interstade [is about] 100 ka BP".[54] It corresponds to GIS 23/24.[56]

Eemian interglacial[edit]

The "controversially split Eemian period, the predecessor of our own warm period about 125,000 years ago."[47]

"The Eem interglaciation […] lasted from 131 to 117 kyr B.P."[47]


"Clay deposition in the Piauí River floodplain around 436 ± 51.5 ka occurred during a warmer period of the Aftonian interglaciation, corresponding to isotope stage 12 (Ericson and Wollin, 1968)."[61]


"The [Calabrian] GSSP occurs at the base of the marine claystone conformably overlying sapropelic bed ‘e’ within Segment B in the Vrica section. This lithological level represents the primary marker for the recognition of the boundary, and is assigned an astronomical age of 1.80 Ma on the basis of sapropel calibration."[62]


"The base of the Quaternary System [shown in the image on the right] is defined by the Global Stratotype Section and Point (GSSP) of the Gelasian Stage at Monte San Nicola in Sicily, Italy, currently dated at 2.58 Ma."[63]

Paleolithic history[edit]

The paleolithic period dates from around 2.6 x 106 b2k to the end of the Pleistocene around 12,000 b2k.


The Pleistocene dates from 2.588 x 106 to 11,700 b2k.


Main sources: History/Quaternary and Quaternary
Calculated Greenland temperatures are through the last 20,000 years. Credit: Willi Dansgaard.

The "whole change elapsed just opposite the course of events that characterized the great glacial oscillations with sudden warming followed by slow cooling. Therefore, the two phenomena hardly have the same cause."[47]


Main sources: History/Piacenzian and Piacenzian

"The base of the beige marl bed of the small-scale carbonate cycle 77 (sensu Hilgen, 1991b) is the approved base of the Piacenzian Stage (that is the Lower Pliocene-Middle Pliocene boundary). It corresponds to precessional excursion 347 as numbered from the present with an astrochronological age estimate of 3.600 Ma (Lourens et al., 1996a)."[64]


Main sources: History/Zanclean and Zanclean

"The boundary-stratotype of the stage is located in the Eraclea Minoa section on the southern coast of Sicily (Italy), at the base of the Trubi Formation. The age of the Zanclean and Pliocene GSSP at the base of the stage is 5.33 Ma in the orbitally calibrated time scale, and lies within the lowermost reversed episode of the Gilbert Chron (C3n.4r), below the Thvera normal subchron."[65]


Main sources: History/Pliocene and Pliocene

The Pliocene ranges from 5.332 x 106 to 2.588 x 106 b2k.


Main sources: History/Prehistory and Prehistory

The prehistory period dates from around 7 x 106 b2k to about 7,000 b2k.


Main sources: History/Miocene and Miocene

The Miocene dates from 23.03 x 106 to 5.332 x 106 b2k.


Main sources: History/Neogene and Neogene

The Neogene dates from 23.03 x 106 to 2.58 x 106 b2k.

Holarctic-Antarctic Ice Age[edit]

"This late Cenozoic ice age began at least 30 million years ago in Antarctica; it expanded to Arctic regions of southern Alaska, Greenland, Iceland, and Svalbard between 10 and 3 million years ago. Glaciers and ice sheets in these areas have been relatively stable, more-or-less permanent features during the past few million years."[66]


Main sources: History/Oligocene and Oligocene

The Oligocene dates from 33.9 ± 0.1 x 106 to 23.03 x 106 b2k.


Main sources: History/Eocene and Eocene

The Eocene dates from 55.8 ± 0.2 x 106 to 33.9 ± 0.1 x 106 b2k.


Main sources: History/Paleocene and Paleocene

The Paleocene dates from 65.5 ± 0.3 x 106 to 55.8 ± 0.2 x 106 b2k.


Main sources: History/Paleogene and Paleogene

The Paleogene Period extends from 65.5 ± 0.3 to 23.03 ± 0.05 x 106 b2k.


Main sources: History/Tertiary and Tertiary

The Tertiary Period extends from 65.5 ± 0.3 to 2.588 x 106 b2k.


Main sources: History/Mesozoic and Mesozoic

The Permian/Triassic boundary occurs at 248.2 ± 4.8 Ma (million years ago).[60]


Main sources: History/Cretaceous and Cretaceous

The Cretaceous period is the third and final period in the Mesozoic Era. It began 145.5 million years ago after the Jurassic Period and ended 65.5 million years ago, before the Paleogene Period of the Cenozoic Era.


Main sources: History/Jurassic and Jurassic

The Jurassic/Cretaceous boundary occurs at 144.2 ± 2.6 Ma (million years ago).[60]

The Triassic/Jurassic boundary occurs at 205.7 ± 4.0 Ma (million years ago).[60]


Main sources: History/Triassic and Triassic

The Triassic/Jurassic boundary occurs at 205.7 ± 4.0 Ma (million years ago).[60]

The Permian/Triassic boundary occurs at 248.2 ± 4.8 Ma (million years ago).[60]


Main sources: History/Paleozoic and Paleozoic

The Paleozoic era spanned 542.0 ± 1.0 to 251.0 ± 0.7 Mb2k.


Main sources: History/Permian and Permian

The Permian lasted from 299.0 ± 0.8 to 251.0 ± 0.4 Mb2k.

The Permian/Triassic boundary occurs at 248.2 ± 4.8 Ma (million years ago).[60]


The Carboniferous began 359.2 ± 2.5 Mb2k and ended 299.0 ± 0.8 Mb2k.


The Pennsylvanian lasted from 318.1 ± 1.3 to 299.0 ± 0.8 Mb2k.


The Mississippian lasted from 359.2 ± 2.5 to 318.1 ± 1.3 Mb2k.

Karoo Ice Age[edit]

Main sources: History/Karoo and Karoo Ice Age

The "Karoo [occurred] between 360 and 260 Ma [but] did not achieve a global extent."[67]


Main sources: History/Devonian and Devonian

The Devonian spanned 416.0 ± 2.8 to 359.2 ± 2.5 Mb2k.


Main sources: History/Silurian and Silurian

The Silurian spanned 443.7 ± 1.5 to 416.0 ± 2.8 Mb2k.

Andean-Saharan ice age[edit]

The "Andean-Saharan [occurred] between 450 and 420 Ma […] did not achieve a global extent."[67]


Main sources: History/Ordovician and Ordovician

The Ordovician lasted from 488.3 ± 1.7 to 443.7 ± 1.5 Mb2k.


Main sources: History/Cambrian and Cambrian

The Cambrian lasted from 542.0 ± 1.0 to 488.3 ± 1.7 Mb2k.


The Phanerozoic eon includes the Paleozoic, Mesozoic, and Cenozoic. It lasted from 542.0 ± 1.0 Mb2k to the present



  1. the time and geology dated before the Phanerozoic or
  2. the eon (or supereon) and rock formations dated before 541.0±1.0 million years ago, coinciding with the first appearance of the fossils of hard-shelled animals

is called the precambrian.

Cryogenian ice age[edit]

The Cryogenian Ice Age, or the Stuartian-Varangian Ice Age, a Late Proterozoic ice age was apparently the greatest of all. Glacial strata are known from all modern continents (except Antarctica) with an overall time range of about 950 to 600 million years old.


Def. a geologic era within the Proterozoic eon; comprises the Tonian, Cryogenian and Ediacaran periods from about 1000 to 544 million years ago, when algae and sponges flourished is called the Neoproterozoic.


Def. a geologic era within the Proterozoic eon; comprises the Calymmian, Ectasian and Stennian periods from about 1600 to 900 million years ago, when the Rodinia supercontinent was formed is called the Mesoproterozoic.


Def. the era from 2,500 Ma to 1,600 Ma, marked by a dramatic increase in atmospheric oxygen is called the Paleoproterozoic.

Huronian ice age[edit]

The Huronian Ice Age is known "mainly from Canada and the United States in North America, where dated rocks range from 2500 to 2100 million years old."[66]

Makganyene glaciation[edit]

The "Makganyene glaciation begins some time after 2.32 Ga and ends at 2.22 Ga, the three Huronian glaciations predate the Makganyene snowball."[68]


Def. the eon from 2,500 Ma to 541.0±1.0 Ma, the beginning of the Phanerozoic, marked by the build up of oxygen in the atmosphere and the emergence of primitive multicellular life is called the Proterozoic.


Main sources: History/Azoic and Azoic


  1. destitute of any vestige of organic life, or at least of animal life,
  2. anterior to the existence of animal life, or
  3. formed when there was no animal life on the globe


Main sources: History/Hypozoic and Hypozoic

Def. older than the lowest rocks which contain organic remains is called the hypozoic.


Main sources: History/Neoarchean and Neoarchean


  1. a geologic era within the Archaean eon from about 2800 to 2500 million years ago or
  2. the era from 2,800 Ma to 2,500 Ma

is called the Neoarchean.

Pongola glaciation[edit]

The Pongola glaciation is dated "at 2.9 Ga".[68]



  1. a geologic era within the Archaean eon from about 3200 to 2800 million years ago; stromatolites have existed from this time or
  2. the era from 3,200 Ma to 2,800 Ma

is called the Mesoarchean.



  1. a geologic era within the Archaean eon from about 3600 to 3200 million years ago; the first aerobic bacteria appeared at this time or
  2. the era from 3,600 Ma to 3,200 Ma

is called the paleoarchean.


Main sources: History/Archean and Archean

Archaean is an alternate spelling of Archean.


  1. the geologic eon from about 3,800 to 2,500 million years ago; comprises the Eoarchean, Paleoarchean, Mesoarchean and Neoarchean eras; marked by an atmosphere with little oxygen, the formation of the first continents and oceans and the emergence of simple life or
  2. the eon from 2,500 Ma to 4,000 Ma

is called the Archaean, or Archean.


Main sources: History/Eoarchean and Eoarchean


  1. a geologic era within the Archaean eon from about 4600 to 3600 million years ago; the first single-celled life began at this time or
  2. the era from 4,000 Ma to 3,600 Ma

is called the Eoarchean.


Main sources: History/Hadean and Hadean


  1. the geologic eon from about 4,600 to 3,800 million years ago; marked by the formation of the solar system, a stable Earth-Moon orbit and the first rocks or
  2. the eon before 4,000 Ma

is called the Hadean.


Main sources: Locations/Geography and Geography

"With some of it on the south and more of it on the north of the great main thoroughfare that connects Aldgate and the East India Docks, St. Bede's at this period of its history was perhaps the poorest and most miserable parish in the East End of London."[69]

"US history is replete with examples of the confounding of dominant group and national interests."[70]

"Throughout U. S. history, dominant groups have attempted to impose a set of values and norms on subordinate groups."[71]

See also[edit]


  1. Wesley-Hunt, G. D. (2005). "The morphological diversification of carnivores in North America". Paleobiology 31: 35–32. doi:10.1666/0094-8373(2005)031<0035:TMDOCI>2.0.CO;2. 
  2. Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford University Press. 
  3. This topic is covered in a very accessible manner in Chapter 11 Richard Fortey (1997). Life: An Unauthorised Biography. 
  4. Peter Beaumont (September 6, 2013). "Lessons of past cast shadows over Syria". The Guardian Weekly 189 (13): 18. http://www.theguardian.com/commentisfree/2013/aug/31/syria-suez-casts-long-shadow. Retrieved 2013-11-22. 
  5. W J McGee (July 1899). "The Trend of Human Progress". American Anthropologist New Series 1 (3): 401-47. http://www.jstor.org/stable/658811?&Search=yes&searchText=%22dominant+group%22&list=hide&searchUri=%2Faction%2FdoBasicResults%3Fla%3D%26wc%3Don%26acc%3Doff%26gw%3Djtx%26Query%3D%2522dominant%2Bgroup%2522%26sbq%3D%2522dominant%2Bgroup%2522%26si%3D1%26jtxsi%3D1%26jcpsi%3D1%26artsi%3D1%26so%3Dold%26hp%3D100%26Go.x%3D27%26Go.y%3D14%26Go%3DGo&prevSearch=&item=8&ttl=10177&returnArticleService=showFullText. Retrieved 2011-09-20. 
  6. Jan Sapp (March-April 2012). "Race Finished". American Scientist 100 (2): 164. http://www.americanscientist.org/bookshelf/pub/race-finished. Retrieved 2013-11-22. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 J.N. Lanting (2015). "DATES FOR ORIGIN AND DIFFUSION OF THE EUROPEAN LOGBOAT". Palaeohistoria 57: 627-650. http://ugp.rug.nl/Palaeohistoria/article/download/25107/22563. Retrieved 2017-10-13. 
  8. 8.0 8.1 8.2 Mariella Moon (17 February 2018). Ancient city's LiDAR scans reveal as many buildings as Manhattan. Yahoo News. https://www.yahoo.com/news/ancient-city-apos-lidar-scans-013300196.html?.tsrc=daily_mail&uh_test=2_13. Retrieved 2018-2-18. 
  9. 9.0 9.1 Chris Fisher (17 February 2018). Ancient city's LiDAR scans reveal as many buildings as Manhattan. Yahoo News. https://www.yahoo.com/news/ancient-city-apos-lidar-scans-013300196.html?.tsrc=daily_mail&uh_test=2_13. Retrieved 2018-2-18. 
  10. Carl O. Sauer (July 1941). "The personality of Mexico". Geographical Review 31 (3): 353-364. doi:10.2307/210171. http://www.jstor.org/stable/210171. Retrieved 2018-2-18. 
  11. 11.0 11.1 Wallace Klippert Ferguson (1962). Europe in transition, 1300-1520. Boston: Houghton Mifflin. pp. 692. https://archive.org/details/europeintransiti00ferg. Retrieved 2017-10-10. 
  12. P. E. Damon, D. J. Donahue, B. H. Gore, A. L. Hatheway, A. J. T. Jull, T. W. Linick, P. J. Sercel, L. J. Toolin, C. R. Bronk, E. T. Hall, R. E. M. Hedges, R. Housley, I. A. Law, C. Perry, G. Bonani, S. Trumbore, W. Woelfli, J. C. Ambers, S. G. E. Bowman, M. N. Leese, M. S. Tite (1989). "Radiocarbon dating of the Shroud of Turin". Nature 337 (6208): 611–5. doi:10.1038/337611a0. 
  13. William Meacham (June 1983). "The Authentication of the Turin Shroud: An Issue in Archaeological Epistemology". Current Anthropology 24 (3): 283-311. https://www.jstor.org/stable/2742663. Retrieved 2017-10-10. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Nicole Maca-Meyer, Matilda Arnay, Juan Carlos Rando, Carlos Flores, Ana M González, Vicente M Cabrera, José M Larruga (February 2014). "Ancient mtDNA analysis and the origin of the Guanches". European Journal of Human Genetics 12 (2): 155-62. doi:10.1038/sj.ejhg.5201075. PMID 14508507. http://www.nature.com/ejhg/journal/v12/n2/full/5201075a.html. Retrieved 2016-01-08. 
  15. Gunnar Heinsohn (8 September 2014). A Carbon-14 Chronology. Wordpress.com: Malaga Bay. http://malagabay.wordpress.com/2014/09/08/a-carbon-14-chronology/. Retrieved 2014-10-25. 
  16. Gordon W. Pearson and Florence Qua (1993). "High-Precision 14C Measurement of Irish Oaks to Show the Natural 14C Variations from AD 1840-5000 BC: A Correction". Radiocarbon 35 (1): -24. https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/18069/17799#page=110. Retrieved 2014-10-25. 
  17. 17.0 17.1 17.2 Hans-Ulrich Niemitz (03 April 2000). Did the Early Middle Ages Really Exist?. Cambridge, UK: Cambridge University. http://www.cl.cam.ac.uk/~mgk25/volatile/Niemitz-1997.pdf. Retrieved 2014-10-26. 
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 Gunnar Heinsohn (February 2017). "TENTH CENTURY COLLAPSE". Q-Magazine: 1-26. http://www.q-mag.org/_iserv/dlfiles/dl.php?ddl=q-mag-gunnar-10thcentury.pdf. Retrieved 2017-04-01. 
  19. Lindqvist, Herman. Historien om Sverige. Islossning till kungarike. 1996. See page 165.
  20. J.J. O’Neill (2009). Holy Warriors: Islam and the Demise of Classical Civilization. Ingram Books. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  21. J. Campbell (2003). Cubitt, C., Hg.. ed. Anglo-Saxon Courts, In: Court Culture in the Early Middle Ages: The Proceedings of the First Alcuin Conference. Belgium: Brepols: Turnhout. pp. 155-169. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  22. English Heritage (2017). Story of England. Dark Ages: c 410-1066. http://www.english-heritage.org.uk/learn/story-of-england/dark-ages/architecture/. Retrieved 2017-06-21. 
  23. M.E. Jones (1998). The End of Roman Britain. Ithaca, NY: Cornell University Press. pp. 23. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  24. P.J. Fowler (2002). Farming in the First Millennium A.D.: British Agriculture Between Julius Caesar and William the Conqueror. Cambridge, UK: Cambridge University Press. pp. 28. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  25. P. Southern (2013). Roman Britain: A New History 55 BC-AD 450. The Hill, Stroud; Gloucestershire: Amberley Publishing. pp. 361. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  26. C. Whelton (1998). A Canterbury Tale by Saucy Chaucer. Malaga Bay: Word Press. https://malagabay.wordpress.com/2016/10/06/a-canterbury-tale-by-saucy-chaucer/. Retrieved 2017-06-21. 
  27. 27.00 27.01 27.02 27.03 27.04 27.05 27.06 27.07 27.08 27.09 27.10 27.11 27.12 27.13 27.14 27.15 27.16 27.17 27.18 27.19 27.20 27.21 Gunnar Heinsohn (15 June 2017). "ARTHUR OF CAMELOT AND ATHTHE-DOMAROS OF CAMULODUNUM: A STRATIGRAPHY-BASED EQUATION PROVIDING A NEW CHRONOLOGY FOR 1st MIILLENNIUM ENGLAND". Quantavolution Magazine. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  28. K. Wiles (5 May 2016). "Back to the Dark Ages". History Today. http://www.historytoday.com/kate-wiles/back-dark-ages. Retrieved 2017-06-21. 
  29. 29.00 29.01 29.02 29.03 29.04 29.05 29.06 29.07 29.08 29.09 29.10 29.11 29.12 29.13 29.14 29.15 29.16 Gunnar Heinsohn (15 March 2017). "Felix Romuliana". Q Magazine. http://www.q-mag.org/. Retrieved 2017-04-01. 
  30. B. Yule (September 1990). "The 'dark earth' and Late Roman London, In: Antiquity: A Review of World Archaeology". Quantavolution Magazine. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  31. J. Schofield (May 1990). "Saxon London in a tale of two cities". British Archaeology (44). http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  32. T. Millat (1982). Essex Archaeology and History. Mersea, UK: Mersea Museum. http://www.merseamuseum.org.uk/mmresdetails.php?tot=1&cat=&col=MM&typ=ID&rt=Article&syn=all&ord=dtadd&hit=0&pid=EAH_014_077. Retrieved 2017-06-21. 
  33. 33.0 33.1 33.2 33.3 33.4 Benjamin Clément, translated and adapted by Anne-Marie de Grazia (2 August 2017). "Buried under ashes, a "Little Pompei" discovered near Lyon". Sciences et Avenir. http://www.q-mag.org/buried-under-ashesa-little-pompei-discovered-near-lyon.html. Retrieved 2017-08-16. 
  34. Caitlin [T.] Green (13 December 2011). Britons and Anglo-Saxons: Lincolnshire AD 400–650. Lincoln/UK: History of Lincolnshire Committee. http://www.q-mag.org/arthur-of-camelot-and-aththe-of-camulodunum.html. Retrieved 2017-06-21. 
  35. D.C. Briscoe (2016). "Two Important Stamp Motifs in Roman Britain and Thereafter, In: Romano-British Pottery in the Fifth Century". Internet Archaeology (41). doi:https://doi.org/10.11141/ia.41.2. 
  36. L. Bekić (2016). "Nalazi 8. i 9. stoljeća sa Šarnjaka kod Šemovca / Finds from the 8th and 9th centuries at Šarnjak near Šemovec". Vjesnik Arheološkog muzeja u Zagrebu (VAMZ) XLIX: 219-248. 
  37. 37.0 37.1 37.2 37.3 37.4 Giacomo Capuzzo (2014). SPACE-TEMPORAL ANALYSIS OF RADIOCARBON EVIDENCE AND ASSOCIATED ARCHAEOLOGICAL RECORD: FROM DANUBE TO EBRO RIVERS AND FROM BRONZE TO IRON AGES. BARCELONA, Spain: UNIVERSITAT AUTÒNOMA DE BARCELONA. pp. 416. https://ddd.uab.cat/pub/tesis/2014/hdl_10803_283401/gc1de1.pdf. Retrieved 2017-10-11. 
  38. 38.0 38.1 A. Speranza, J. van der Plicht, and B. van Geel (November 2000). "Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching". Quaternary Science Reviews 19 (16): 1589-1604. doi:10.1016/S0277-3791(99)00108-0. http://www.researchgate.net/publication/30494985_Improving_the_time_control_of_the_SubborealSubatlantic_transition_in_a_Czech_peat_sequence_by_14C_wiggle-matching/file/60b7d51c350cf2efa0.pdf. Retrieved 2014-11-04. 
  39. 39.0 39.1 Gunnar Heinsohn (1997). The sudden emergence of the great sacrificial cults and of priest- kingship at the beginning of the Bronze Age, In: The Creation of the Gods - Sacrifice as the Origin of Religion. Bremen, Germany: Rowohlt. pp. 252. ISBN [[Special:BookSources/ISBN 3498029371|ISBN 3498029371]]. https://books.google.com/books?id=lFd5AAAAMAAJ. Retrieved 2017-08-18. 
  40. S Bourke, U Zoppi, J Meadows, Q Hua, S Gibbins (January 2009). "The beginning of the Early Bronze Age in the north Jordan Valley: new 14C determinations from Pella in Jordan". Radiocarbon 51 (3): 905-913. doi:10.2458/azu_js_rc.51.3549. https://www.researchgate.net/profile/Quan_Hua2/publication/260038389_The_Beginning_of_the_Early_Bronze_Age_in_the_North_Jordan_Valley_New_14C_determinations_from_Pella_in_Jordan/links/00b49537d32bf17b4a000000.pdf. Retrieved 2016-10-23. 
  41. B.S. Ottaway (2001). "Innovation, production and specialization in early prehistoric copper metallurgy". European Journal of Archaeology 4 (1): 87-112. doi:10.1179/eja.2001.4.1.87. http://www.tandfonline.com/doi/abs/10.1179/eja.2001.4.1.87. Retrieved 2016-10-23. 
  42. 42.0 42.1 Christopher Bronk Ramsey, Michael W. Dee, Joanne M. Rowland, Thomas F. G. Higham, Stephen A. Harris, Fiona Brock, Anita Quiles, Eva M. Wild, Ezra S. Marcus, Andrew J. Shortland (18 June 2010). "Radiocarbon-Based Chronology for Dynastic Egypt". Science 328 (5985): 1554-1557. doi:10.1126/science.1189395. http://science.sciencemag.org/content/328/5985/1554. Retrieved 2017-10-11. 
  43. Hendrik Bruins and Johannes van der Plicht (1995). "Tell-es-Sultan (Jericho): Radiocarbon results of short-lived cereal and multiyear charcoal samples from the end of the Middle Bronze Age". Radiocarbon 37 (2): 213-220. https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/1666/1670. Retrieved 2017-10-11. 
  44. 44.0 44.1 Hsain Ilahiane (17 July 2006). Historical Dictionary of the Berbers (Imazighen). Lanham, Maryland USA: The Scarecrow Press. pp. 360. ISBN 0810864908. https://books.google.com/books?isbn=0810864908. Retrieved 2017-09-22. 
  45. E.B. Karabanov, A.A. Prokopenko, D.F. Williams, and G.K. Khursevich (March 2000). "A new record of Holocene climate change from the bottom sediments of Lake Baikal". Palaeogeography, Palaeoclimatology, Palaeoecology 156 (3-4): 211–24. doi:10.1016/S0031-0182(99)00141-8. http://www.sciencedirect.com/science/article/pii/S0031018299001418. Retrieved 2014-11-04. 
  46. 46.0 46.1 John Darnell (22 June 2017). 5,000-Year-Old 'Billboard' of Hieroglyphs Contains a Cosmic Message. Live Science. https://www.livescience.com/59588-billboard-of-hieroglyphs-contains-cosmic-message.html. Retrieved 2017-06-25. 
  47. 47.0 47.1 47.2 47.3 47.4 47.5 47.6 Willi Dansgaard (2005). The Department of Geophysics of The Niels Bohr Institute for Astronomy, Physics and Geophysics at The University of Copenhagen, Denmark. ed. Frozen Annals Greenland Ice Cap Research. Copenhagen, Denmark: Niels Bohr Institute. pp. 123. ISBN 87-990078-0-0. http://www.iceandclimate.nbi.ku.dk/publications/FrozenAnnals.pdf/. Retrieved 2014-10-05. 
  48. Bruce Bower (17 July 2010). "Serbian site may have hosted first copper makers". ScienceNews. http://www.sciencenews.org/view/generic/id/60563/description/Serbian_site_may_have_hosted_first_copper_makers. Retrieved 22 April 2017. 
  49. Julka Kuzmanovic-Cvetkovic (8 October 2008). Ancient axe find suggests Copper Age began earlier than believed. http://www.thaindian.com/newsportal/india-news/ancient-axe-find-suggests-copper-age-began-earlier-than-believed_100105122.html. Retrieved 2017-10-13. 
  50. 50.0 50.1 50.2 50.3 Bernd Kromer and Bernd Becker (1993). "German Oak and Pine 14C Calibration, 7200-9439 BC". Radiocarbon 35 (1): 125-135. https://journals.uair.arizona.edu/index.php/radiocarbon/article/download/18069/17799#page=130. Retrieved 2017-10-13. 
  51. 51.0 51.1 Jan Mangerud (1987). W. H. Berger and L. D. Labeyrie. ed. The Alleröd/Younger Dryas Boundary, In: Abrupt Climatic Change. D. Reidel Publishing Company. pp. 163-71. http://folk.uib.no/ngljm/PDF_files/Mangerud%201987,YD%20boundary.PDF. Retrieved 2014-11-03. 
  52. Konrad A. Hughes, Jonathan T. Overpeck, Larry C. Peterson & Susan Trumbore (7 March 1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. 380. pp. 51-4. http://www.diagonalarida.cl/SemV/Hughen_etal_1996_tropicalAtlantic.pdf. Retrieved 2014-11-05. 
  53. Zicheng Yu and Ulrich Eicher (2001). "Three Amphi-Atlantic Century-Scale Cold Events during the Bølling-Allerød Warm Period". Géographie physique et Quaternaire 55 (2): 171-9. doi:10.7202/008301ar. http://www.lehigh.edu/~ziy2/pubs/YuGpQPreprint.pdf. Retrieved 2014-11-04. 
  54. 54.0 54.1 54.2 54.3 Michael Houmark-Nielsen, (30 November 1994). "Late Pleistocene stratigraphy, glaciation chronology and Middle Weichselian environmental history from Klintholm, Møn, Denmark". Bulletin of the Geological Society of Denmark 41 (2): 181-202. http://2dgf.dk/xpdf/bull41-02-181-202.pdf. Retrieved 2014-11-03. 
  55. 55.00 55.01 55.02 55.03 55.04 55.05 55.06 55.07 55.08 55.09 55.10 55.11 55.12 55.13 55.14 55.15 55.16 55.17 Sasha Naomi Bharier Leigh (2007). A STUDY OF THE DYNAMICS OF THE BRITISH ICE SHEET DURING MARINE ISOTOPE STAGES 2 AND 3, FOCUSING ON HEINRICH EVENTS 2 AND 4 AND THEIR RELATIONSHIP TO THE NORTH ATLANTIC GLACIOLOGICAL AND CLIMATOLOGICAL CONDITIONS. St Andrews, Scotland: University of St Andrews. pp. 219. https://research-repository.st-andrews.ac.uk/bitstream/handle/10023/525/Sasha%20Leigh%20MPhil%20thesis.pdf?sequence=1. Retrieved 2017-02-16. 
  56. 56.00 56.01 56.02 56.03 56.04 56.05 56.06 56.07 56.08 56.09 56.10 56.11 56.12 Barbara Wohlfarth (April 2010). "Ice-free conditions in Sweden during Marine Oxygen Isotope Stage 3?". Boreas 39: 377-98. doi:10.1111/j.1502-3885.2009.00137.x. http://people.su.se/~wohlf/pdf/Wohlfarth%20Boreas%202010.pdf. Retrieved 2014-11-06. 
  57. 57.0 57.1 A.A. Nikonov, M.M. Shakhnovich, J. van der Plicht (2011). "Age of Mammoth Remains from the Submoraine Sediments of the Kola Peninsula and Karelia". Doklady Earth Sciences 436 (2): 308-10. http://cio.eldoc.ub.rug.nl/FILES/root/2011/DoklEarthSciNikonov/2011DoklEarthSciNikonov.pdf?origin=publication_detail. Retrieved 2014-11-06. 
  58. J. Vandenberghe and G. Nugteren (2001). "Rapid climatic changes recorded in loess successions". Global and Planetary Change 28 (1-9): 222-30. http://shixi.bnu.edu.cn/field-trips/cooperation/ChinaSweden/the%20link/1.1.4.pdf. Retrieved 2014-11-06. 
  59. Catherine Brahic (08 August 2014). "Human exodus may have reached China 100,000 years ago". New Scientist. http://www.newscientist.com/article/mg22329813.000-human-exodus-may-have-reached-china-100000-years-ago.html#.U-_PEShOSlI. Retrieved 2014-08-16. 
  60. 60.0 60.1 60.2 60.3 60.4 60.5 60.6 Felix M. Gradstein, Frits P. Agterberg, James G. Ogg, Jan Hardenbol, Paul Van Veen, Jacques Thierry, and Zehui Huang (1995). A Triassic, Jurassic and Cretaceous Time Scale, In: Geochronology Time Scales and Global Stratigraphic Correlation. SEPM Special Publication No. 54. Society for Sedimentary Geology. doi:1-56576-024-7. http://archives.datapages.com/data/sepm_sp/SP54/A_Triassic_Jurassic_and_Cretaceous_Time_Scale.htm. Retrieved 2017-02-14. 
  61. Janaina C. Santos; Alcina Magnólia Franca BarretoII; Kenitiro Suguio (16 August 2012). "Quaternary deposits in the Serra da Capivara National Park and surrounding area, Southeastern Piauí state, Brazil". Geologia USP. Série Científica 12 (3). doi:10.5327/Z1519-874X2012000300008. http://ppegeo.igc.usp.br/scielo.php?pid=S1519-874X2012000300009&script=sci_arttext. Retrieved 2015-01-20. 
  62. Maria Bianca Cita, Philip L. Gibbard, Martin J. Head, and the ICS Subcommission on Quaternary Stratigraphy (September 2012). "Formal ratification of the GSSP for the base of the Calabrian Stage (second stage of the Pleistocene Series, Quaternary System)". Episodes 35 (3): 388-97. http://www.stratigraphy.org/GSSP/Calabrian2.pdf. Retrieved 2015-01-18. 
  63. Philip L. Gibbard and Martin J. Head (September 2010). "The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification". Episodes 33 (3): 152-8. http://www.stratigraphy.org/GSSP/Quaternary&Pleistocene.pdf. Retrieved 2015-01-20. 
  64. D. Castradori, D. Rio, F. J. Hilgen, and L. J. Lourens (June 1998). "The Global Standard Stratotype-section and Point (GSSP) of the Piacenzian Stage (Middle Pliocene)". Episodes 21 (2): 88-93. http://www.stratigraphy.org/GSSP/Piacenzian.pdf. Retrieved 2015-01-23. 
  65. John A. Van Couvering, Davide Castradori, Maria Bianca Cita, Frederik J. Hilgen, and Domenico Rio (September 2000). [http://www.stratigraphy.org/GSSP/Zanclean.pdf "The base of the Zanclean Stage and of the Pliocene Series"]. Episodes 23 (3): 179-87. http://www.stratigraphy.org/GSSP/Zanclean.pdf. Retrieved 2015-01-23. 
  66. 66.0 66.1 James S. Aber (2008). GLACIATIONS THROUGHOUT EARTH HISTORY. Emporia, Kansas USA: Emporia State University. http://academic.emporia.edu/aberjame/ice/labs/lab03.htm. Retrieved 2014-11-06. 
  67. 67.0 67.1 M Gargaud, H Martin, P López-García (2012). A Planet Where Life Diversifies, In: Young Sun, Early Earth and the Origins of Life. Berlin: Springer. pp. 211-39. doi:10.1007/978-3-642-22552-9_7. ISBN 978-3-642-22551-2. http://link.springer.com/chapter/10.1007/978-3-642-22552-9_7/fulltext.html. Retrieved 2014-11-06. 
  68. 68.0 68.1 Robert E. Kopp, Joseph L. Kirschvink, Isaac A. Hilburn, and Cody Z. Nash (9 August 2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". Proceedings of the National Academy of Sciences of the United States of America 102 (32): 11131–11136. doi:10.1073/pnas.0504878102. http://www.pnas.org/content/102/32/11131.full. Retrieved 2017-02-14. 
  69. W. B. Maxwell (1918). "7". The Mirror and the Lamp. http://openlibrary.org/works/OL1097634W. Retrieved 2013-11-22. 
  70. Ashley W. Doane Jr. (June 1997). "Dominant Group Ethnic Identity in the United States: The Role of “Hidden’ Ethnicity in Intergroup Relations". The Sociological Quarterly 38 (3): 375-97. doi:10.1111/j.1533-8525.1997.tb00483.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1533-8525.1997.tb00483.x/abstract. Retrieved 2012-04-03. 
  71. Martin Carnoy (1989). Henry A. Giroux, Peter McLaren. ed. Education, State, and Culture in American Society, In: Critical pedagogy, the state, and cultural struggle. Albany: State University of New York Press. pp. 3-23. ISBN 0791400360. http://books.google.com/books?hl=en&lr=&id=x6G8AglUSWQC&oi=fnd&pg=PA3&ots=DYdAm8JSdy&sig=VAtJXc8TB47eQH2EelPhZaefajA. Retrieved 2012-04-04. 

External links[edit]

{{Anthropology resources}}{{Archaeology resources}}{{Humanities resources}}