3-bit Walsh permutation/seeds
There are 25 transforms that look similar to the neutral position.
This is the case when the view from one or two axes remains the same or almost the same.
Almost the same means, that the original square is sheared into a (simple) parallelogram.
These are the 25 permutations in the middle cluster of the positive component of the neighbor graph.
Each of their matrices has a different set of columns. (I.e., each of their vectors has entries from a different set of integers.)
There are 3*6=18 transform that do not look like a square or simple parallelogram from any side, namely those who's matrices have seven 1s.
They are also shown in three rows of the table below. The choice which to put in the left column is somewhat random.
The ones chosen are those not connected to the central cluster in the positive component. (I.e. the three remaining ones with black circles.)
The table shows some properties of the permutations in the left column:
conjugacy class | neut. | 2+2 | 2+4 | ||||
---|---|---|---|---|---|---|---|
cycle shape | London | Rome | Florence | Lima 5 | Lima 6 | Rio + | |
sum | 3 | 4 | 5a | 5b | 6 | 7 | |
quantity | 1 | 6 | 3 | 3 | 6 | 6 | 3 |
12 | 12 |
Permutations in the same row have the same complement pattern:
|
|
|
Each row contains the transform with the binary matrix above and that with an inverse matrix below.
(The latter is the same pattern of non-zero entries, but some 1s are negative.)
(The matrices for the first row are self-inverse.)
cc | cs | cp | t | stretch | stretched seeds | |||||
---|---|---|---|---|---|---|---|---|---|---|
neut. | 3 | neut.37 | 124 | ![]()
|
![]() 124 |
![]() 214 |
![]() 142 |
![]() 412 |
![]() 241 |
![]() 421 |
2+2 | 4 | London26 | 134 | ![]()
|
![]() 134 ![]() |
![]() 314 ![]() |
![]() 143 ![]() |
![]() 413 ![]() |
![]() 341 ![]() |
![]() 431 ![]() |
2+2 | 4 | London26 | 125 | ![]()
|
![]() 125 ![]() |
![]() 215 ![]() |
![]() 152 ![]() |
![]() 512 ![]() |
![]() 251 ![]() |
![]() 521 ![]() |
2+2 | 4 | London25 | 234 | ![]()
|
![]() 324 ![]() |
![]() 234 ![]() |
![]() 342 ![]() |
![]() 432 ![]() |
![]() 243 ![]() |
![]() 423 ![]() |
2+2 | 4 | London25 | 126 | ![]()
|
![]() 126 ![]() |
![]() 216 ![]() |
![]() 162 ![]() |
![]() 612 ![]() |
![]() 261 ![]() |
![]() 621 ![]() |
2+2 | 4 | London23 | 245 | ![]()
|
![]() 524 ![]() |
![]() 254 ![]() |
![]() 542 ![]() |
![]() 452 ![]() |
![]() 245 ![]() |
![]() 425 ![]() |
2+2 | 4 | London23 | 146 | ![]()
|
![]() 164 ![]() |
![]() 614 ![]() |
![]() 146 ![]() |
![]() 416 ![]() |
![]() 641 ![]() |
![]() 461 ![]() |
2+2 | 5a | Rome11 | 247 | ![]()
|
![]() 724 ![]() |
![]() 274 ![]() |
![]() 742 ![]() |
![]() 472 ![]() |
![]() 247 ![]() |
![]() 427 ![]() |
2+2 | 5a | Rome12 | 147 | ![]()
|
![]() 174 ![]() |
![]() 714 ![]() |
![]() 147 ![]() |
![]() 417 ![]() |
![]() 741 ![]() |
![]() 471 ![]() |
2+2 | 5a | Rome14 | 127 | ![]()
|
![]() 127 ![]() |
![]() 217 ![]() |
![]() 172 ![]() |
![]() 712 ![]() |
![]() 271 ![]() |
![]() 721 ![]() |
2+2 | 5a | Florence37 | 135 | ![]()
|
![]() 135 ![]() |
![]() 315 ![]() |
![]() 153 ![]() |
![]() 513 ![]() |
![]() 351 ![]() |
![]() 531 ![]() |
2+2 | 5a | Florence37 | 236 | ![]()
|
![]() 326 ![]() |
![]() 236 ![]() |
![]() 362 ![]() |
![]() 632 ![]() |
![]() 263 ![]() |
![]() 623 ![]() |
2+2 | 5a | Florence37 | 456 | ![]()
|
![]() 564 ![]() |
![]() 654 ![]() |
![]() 546 ![]() |
![]() 456 ![]() |
![]() 645 ![]() |
![]() 465 ![]() |
2+4 | 5b | Lima 512 | 156 | ![]()
|
![]() 165 ![]() |
![]() 615 ![]() |
![]() 156 ![]() |
![]() 516 ![]() |
![]() 651 ![]() |
![]() 561 ![]() |
2+4 | 5b | Lima 514 | 136 | ![]()
|
![]() 136 ![]() |
![]() 316 ![]() |
![]() 163 ![]() |
![]() 613 ![]() |
![]() 361 ![]() |
![]() 631 ![]() |
2+4 | 5b | Lima 514 | 235 | ![]()
|
![]() 325 ![]() |
![]() 235 ![]() |
![]() 352 ![]() |
![]() 532 ![]() |
![]() 253 ![]() |
![]() 523 ![]() |
2+4 | 5b | Lima 511 | 256 | ![]()
|
![]() 526 ![]() |
![]() 256 ![]() |
![]() 562 ![]() |
![]() 652 ![]() |
![]() 265 ![]() |
![]() 625 ![]() |
2+4 | 5b | Lima 512 | 345 | ![]()
|
![]() 534 ![]() |
![]() 354 ![]() |
![]() 543 ![]() |
![]() 453 ![]() |
![]() 345 ![]() |
![]() 435 ![]() |
2+4 | 5b | Lima 511 | 346 | ![]()
|
![]() 364 ![]() |
![]() 634 ![]() |
![]() 346 ![]() |
![]() 436 ![]() |
![]() 643 ![]() |
![]() 463 ![]() |
2+4 | 6 | Lima 623 | 157 | ![]()
|
![]() 175 ![]() |
![]() 715 ![]() |
![]() 157 ![]() |
![]() 517 ![]() |
![]() 751 ![]() |
![]() 571 ![]() |
2+4 | 6 | Lima 625 | 137 | ![]()
|
![]() 137 ![]() |
![]() 317 ![]() |
![]() 173 ![]() |
![]() 713 ![]() |
![]() 371 ![]() |
![]() 731 ![]() |
2+4 | 6 | Lima 623 | 267 | ![]()
|
![]() 726 ![]() |
![]() 276 ![]() |
![]() 762 ![]() |
![]() 672 ![]() |
![]() 267 ![]() |
![]() 627 ![]() |
2+4 | 6 | Lima 626 | 237 | ![]()
|
![]() 327 ![]() |
![]() 237 ![]() |
![]() 372 ![]() |
![]() 732 ![]() |
![]() 273 ![]() |
![]() 723 ![]() |
2+4 | 6 | Lima 625 | 467 | ![]()
|
![]() 764 ![]() |
![]() 674 ![]() |
![]() 746 ![]() |
![]() 476 ![]() |
![]() 647 ![]() |
![]() 467 ![]() |
2+4 | 6 | Lima 626 | 457 | ![]()
|
![]() 574 ![]() |
![]() 754 ![]() |
![]() 547 ![]() |
![]() 457 ![]() |
![]() 745 ![]() |
![]() 475 ![]() |
7a | 7 | Rio +11 | 357 | ![]()
|
![]() 753 ![]() |
![]() 735 ![]() |
![]() 573 ![]() |
![]() 537 ![]() |
![]() 375 ![]() |
![]() 357 ![]() |
7a | 7 | Rio +12 | 367 | ![]()
|
![]() 673 ![]() |
![]() 637 ![]() |
![]() 763 ![]() |
![]() 736 ![]() |
![]() 367 ![]() |
![]() 376 ![]() |
7a | 7 | Rio +14 | 567 | ![]()
|
![]() 657 ![]() |
![]() 675 ![]() |
![]() 567 ![]() |
![]() 576 ![]() |
![]() 765 ![]() |
![]() 756 ![]() |