WikiJournal of Science/Beak and feather disease virus: biology and resultant disease/XML

From Wikiversity
Jump to navigation Jump to search
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch version="4.4.0" xmlns="" xmlns:xsi="" xsi:schemaLocation="">
   <email_address><span class="nowrap">Contact[[File:At sign.svg|15px|@|link=]]</span></email_address>
    <full_title>WikiJournal of Science/Beak and feather disease virus: biology and resultant disease</full_title>
    <issn media_type='electronic'></issn>
    <publication_date media_type='online'>     
   <journal_article publication_type='full_text'>   
     <title>Beak and feather disease virus: biology and resultant disease</title>
    <person_name sequence='first' contributor_role='author'>
    <publication_date media_type='online'>     
     <resource> of Science/Beak and feather disease virus: biology and resultant disease</resource>
    <license license-type="open-access">
     <license-p>[[File:Open_Access_logo_PLoS_white.svg|11px|link=Wikipedia:Open Access]] [[|16px|link=Wikipedia:Creative Commons]]
This is an open access article distributed under the&nbsp;[ Creative Commons Attribution License], which permits unrestricted use, distribution, and reproduction, provided the original author and source are credited.</license-p>
The ''beak and feather disease virus'' (BFDV) causes psittacine beak and feather disease, an often chronic and fatal disease in psittacine birds. The virus most commonly infects psittacine birds, but is also capable of infecting non-psittacine bird species in Australasia. The virus induces an immunosuppressive condition with chronic symmetrical irreversible loss of feather, as well as beak and claw deformities eventually leading to death. No specific treatment is currently commercially available for infected birds; however, a combination of quarantine and hygiene control, diagnostic testing and enhancing flock adaptive immunity is recommended to provide the most effective and sustainable control. Recent structural determination of BFDV capsid protein provides insights into the different assemblies that can be formed from one of the smallest known DNA viruses.