Let
V
,
W
{\displaystyle {}V,W}
be
vector spaces
over
K
{\displaystyle {}{\mathbb {K} }}
, endowed with
inner products,
and let
φ
:
V
⟶
W
{\displaystyle \varphi \colon V\longrightarrow W}
be s
linear mapping .
Then
φ
{\displaystyle {}\varphi }
is called an isometry if
⟨
φ
(
v
)
,
φ
(
w
)
⟩
=
⟨
v
,
w
⟩
{\displaystyle {}\left\langle \varphi (v),\varphi (w)\right\rangle =\left\langle v,w\right\rangle \,}
holds for all
v
,
w
∈
V
{\displaystyle {}v,w\in V}
.
An isometry is always
injective .
For
K
=
C
{\displaystyle {}{\mathbb {K} }=\mathbb {C} }
,
we also talk about an unitary mapping . As there are also affine isometries, we talk about a linear isometry .
Let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be
vector spaces
over
K
{\displaystyle {}{\mathbb {K} }}
, both endowed with an
inner product,
and let
φ
:
V
→
W
{\displaystyle {}\varphi \colon V\rightarrow W}
be a
linear mapping . Then the following statements are equivalent.
φ
{\displaystyle {}\varphi }
is an
isometry.
For all
u
,
v
∈
V
{\displaystyle {}u,v\in V}
,
we have
d
(
φ
(
u
)
,
φ
(
v
)
)
=
d
(
u
,
v
)
{\displaystyle {}d(\varphi (u),\varphi (v))=d(u,v)}
.
For all
v
∈
V
{\displaystyle {}v\in V}
,
we have
‖
φ
(
v
)
‖
=
‖
v
‖
{\displaystyle {}\Vert {\varphi (v)}\Vert =\Vert {v}\Vert }
.
For all
v
∈
V
{\displaystyle {}v\in V}
fulfilling
‖
v
‖
=
1
{\displaystyle {}\Vert {v}\Vert =1}
,
we have
‖
φ
(
v
)
‖
=
1
{\displaystyle {}\Vert {\varphi (v)}\Vert =1}
.
◻
{\displaystyle \Box }
Therefore, an isometry is just a
(linear)
mapping that preserves distances. The set of all the vectors with norm
1
{\displaystyle {}1}
in a Euclidean vector space is also called the
sphere.
Hence, an isometry is characterized by the property that it maps the sphere to the sphere.
Let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be
euclidean vector spaces,
and let
φ
:
V
⟶
W
{\displaystyle \varphi \colon V\longrightarrow W}
denote a
linear mapping . Then the following statements are equivalent.
φ
{\displaystyle {}\varphi }
is an
isometry.
For every
orthonormal basis
u
i
{\displaystyle {}u_{i}}
,
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
of
V
{\displaystyle {}V}
,
φ
(
u
i
)
{\displaystyle {}\varphi (u_{i})}
,
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
is part of an orthonormal basis of
W
{\displaystyle {}W}
.
There exists an
orthonormal basis
u
i
{\displaystyle {}u_{i}}
,
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
of
V
{\displaystyle {}V}
such that
φ
(
u
i
)
{\displaystyle {}\varphi (u_{i})}
,
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
is part of an orthonormal basis of
W
{\displaystyle {}W}
.
Proof
◻
{\displaystyle \Box }
For every
euclidean vector space
V
{\displaystyle {}V}
, there exists a bijective
isometry
φ
:
R
n
⟶
V
,
{\displaystyle \varphi \colon \mathbb {R} ^{n}\longrightarrow V,}
where
R
n
{\displaystyle {}\mathbb {R} ^{n}}
carries the
standard inner product.
Let
u
1
,
…
,
u
n
{\displaystyle {}u_{1},\ldots ,u_{n}}
be an
orthonormal basis
of
V
{\displaystyle {}V}
, and let
φ
:
R
n
⟶
V
{\displaystyle \varphi \colon \mathbb {R} ^{n}\longrightarrow V}
be the
linear mapping
given by
φ
(
e
i
)
=
u
i
.
{\displaystyle {}\varphi (e_{i})=u_{i}\,.}
Because of
fact (3) ,
this is an
isometry.
◻
{\displaystyle \Box }