Let K {\displaystyle {}K} be a field, let I {\displaystyle {}I} denote an index set, and let K I = Map ( I , K ) {\displaystyle {}K^{I}=\operatorname {Map} \,{\left(I,K\right)}} be the corresponding vector space.
is a linear subspace of K I {\displaystyle {}K^{I}} .
Show that every element f ∈ E {\displaystyle {}f\in E} can be expressed uniquely as a linear combination of the family e i {\displaystyle {}e_{i}} , i ∈ I {\displaystyle {}i\in I} .