University of Florida/Eml4507/s13.team4ever.R5
Problem R5.1
[edit | edit source]On my honor, I have neither given nor recieved unauthorized aid in doing this assignment.
Description
[edit | edit source]We are to solve, by hand, the generalized eigenvalue for the mass-spring-damper system on p. 53-13 using the following data for the masses and stiffness coefficients:
We are then to compare this result with those obtained using CALFEM. Finally, we are to verify the mass-orthogonality of the eigenvectors.
Given:
[edit | edit source]We are given that for a generalized eigenvalue problem:
We also know that:
and
Therefore, we have:
and
Solution:
[edit | edit source]The first step would be to find an eigenvalue, that satifies:
To do this, we must find an eigenvalue that satifies:
We then have:
)
This gives us
Solving this equation using the quadratic equation gives us eigenvalues of:
We will first take the lowest eigenvalue. We'll now try to find the corresponding eigenvector. Plugging this eigenvalue into the equaiton
We need to find a value of that satisfies the above equation.
Augmenting the right hand matrix onto the left hand matrix and putting this in row reduced echelon form, we obtain,
This means that the corresponding eigenvector is:
We will now take the higher eigenvalue. We'll now try to find the corresponding eigenvector. Plugging this eigenvalue into the equaiton
We need to find a value of that satisfies the above equation.
Augmenting the right hand matrix onto the left hand matrix and putting this in row reduced echelon form, we obtain,
This means that the corresponding eigenvector is:
We will now verify the mass orthogonality of the eigenvectors. To do this, we need to show that
for i not equal to j. For our case, we have:
and
We have then that
Thus verifying the mass-orthogonality of the eigenvectors.
Using our own code from Report 3, we can compare this with CALFEM:
d0=[-1,2];
v0=[0,0];
alpha=1/4; delta=1/2;
nsnap=100;
m1=3;
m2=2;
alpha=1/4; delta=1/2;
d0=[-1,2];
v0=[0,0];
k1=10;
k2=20;
k3=15;
c1=1/2;
c2=1/4;
c3=1/3;
M=[m1,0;0,m2];
C=[(c1+c2),-c2;-c2,(c2+c3)];
K=[(k1+k2),-k2;-k2,(k2+k3)];
[L]=eigen(K,M);
w1=sqrt(L(1));
T1=(2*pi)/w1;
dt=T1/10;
T=[0:dt:5*T1];
Dsnap=step2x(K,C,M,d0,v0,ip,f,pdisp);
EDU>> L
L =
4.7651
22.7349
EDU>> w1
w1 =
2.1829
EDU>> T1
T1 =
0.3473
EDU>> dt
dt =
0.0347
R5.2
[edit | edit source]
Length of members 2-3 and 4-5 (truss height):
Length of members 1-2, 2-4, 4-6 (truss length):
Area of cross section:
Young's modulus:
Mass Density:
Part One:
Solve the generalized eigenvalue problem of the above truss. Display the results for the lowest 3 eigenpairs. Plot the mode shapes.
Part Two:
Consider the same truss, but with 2 missing braces:
Solve the generalized eigenvalue for this truss, and plot the mode shapes.
Solution
[edit | edit source]On my honor, I have neither given nor received unauthorized aid in doing this problem.
function R5p2 % Part One E = 5; p = 2; %kg/m3a A = 0.5; %m2 L = 1; %m h = p*A*L; v = h; d = (sqrt((L^2)+(L^2)))*A*p; m = [(h/2)+(d/2);(h/2)+(d/2); (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2); (h/2)+(d/2)+(d/2)+(v/2);(h/2)+(d/2)+(d/2)+(v/2); (h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2); (h/2)+(d/2)+(d/2)+(v/2);(h/2)+(d/2)+(d/2)+(v/2); (h/2)+(d/2);(h/2)+(d/2)]; M = diag(m); Coord = [0 0;1 0;1 1;2 0;2 1;3 0]; Dof = [1 2;3 4;5 6;7 8;9 10;11 12]; Edof = [1 1 2 3 4;2 1 2 5 6;3 3 4 5 6;4 5 6 9 10;5 5 6 7 8; 6 3 4 9 10;7 3 4 7 8;8 7 8 9 10;9 9 10 11 12;10 7 8 11 12]; bc = [1;2;12]; [Ex,Ey] = coordxtr(Edof,Coord,Dof,2) K = zeros(12); F = zeros(12,1); ep = [E A]; for i=1:10 Ke = bar2e(Ex(i,:),Ey(i,:),ep); K = assem(Edof(i,:),K,Ke); end [L,X] = eigen(K,M,bc); eigval = L; eigvect = X; j1eig = eigval(1) j1eigvx = eigvect(:,1) j1eigvy = eigvect(:,2) j2eig = eigval(2) j2eigvx = eigvect(:,3) j2eigvy = eigvect(:,4) j3eig = eigval(3) j3eigvx = eigvect(:,5) j3eigvy = eigvect(:,6) plotpar = [1 4 0]; scale = .5; eldraw2(Ex,Ey); for j=1:3 clear plot ed = extract(Edof,X(:,j)); P = eldisp2(Ex,Ey,ed,plotpar,scale); W(j) = getframe; drawnow end
Three lowest eigenpairs
j1eig = 0.0890 j1eigvx = 0 0 -0.0938 0.2910 -0.1706 0.2804 -0.1679 0.2946 -0.1131 0.2756 -0.2330 0 j1eigvy = 0 0 -0.1713 -0.2076 -0.2639 -0.1197 -0.2637 -0.1637 -0.3443 -0.1391 -0.2757 0 j2eig = 0.2779 j2eigvx = 0 0 -0.1902 0.2970 0.1621 0.2185 -0.2188 -0.3370 0.1475 -0.2327 -0.0779 0 j2eigvy = 0 0 0.0382 0.1640 -0.2909 0.1947 0.2640 -0.0109 -0.1970 -0.2662 0.4295 0 j3eig = 0.5582 j3eigvx = 0 0 0.2733 0.2621 -0.0575 -0.1395 0.1216 -0.3929 -0.1489 0.2738 -0.1309 0 j3eigvy = 0 0 0.3282 -0.2744 0.1584 0.4169 0.0086 -0.0685 -0.1419 -0.0349 -0.2114 0
% Part Two Coord = [0 0;1 0;1 1;2 0;2 1;3 0]; Dof = [1 2;3 4;5 6;7 8;9 10;11 12]; Edof = [1 1 2 3 4;2 1 2 5 6;3 3 4 5 6;4 5 6 9 10;5 9 10 11 12; 6 7 8 11 12;7 3 4 7 8;8 7 8 9 10]; [Ex,Ey] = coordxtr(Edof,Coord,Dof,2); K = zeros(12); bc = [1;2;12]; ep = [E A]; for i=1:8 Ke = bar2e(Ex(i,:),Ey(i,:),ep); K = assem(Edof(i,:),K,Ke); end [L,X] = eigen(K,M,bc); eigval = L; eigvect = X; j1eig = eigval(1) j1eigvx = eigvect(:,1) j1eigvy = eigvect(:,2) j2eig = eigval(2) j2eigvx = eigvect(:,3) j2eigvy = eigvect(:,4) j3eig = eigval(3) j3eigvx = eigvect(:,5) j3eigvy = eigvect(:,6) plotpar = [1 4 0]; scale = .5; eldraw2(Ex,Ey); for j=3 clear plot ed = extract(Edof,X(:,j)); P = eldisp2(Ex,Ey,ed,plotpar,scale); W(j) = getframe; drawnow end
Three lower eigen pairs
j1eig = 5.5511e-17 j1eigvx = 0 0 0.0000 0.2666 -0.2666 0.2666 0.0000 -0.2666 -0.2666 -0.2666 0.0000 0 j1eigvy = 0 0 0.0872 -0.2534 0.1188 -0.2333 0.1675 -0.3552 0.0680 -0.3270 0.2344 0 j2eig = 0.0902 j2eigvx = 0 0 -0.1544 -0.3189 -0.2063 -0.2326 -0.2669 -0.0106 -0.3004 -0.0077 -0.3073 0 j2eigvy = 0 0 -0.2636 0.1334 0.2701 0.0540 -0.3702 -0.2297 0.2087 -0.0929 -0.2564 0 j3eig = 0.3066 j3eigvx = 0 0 -0.1315 -0.2916 -0.3174 0.2561 -0.0160 -0.1685 0.3129 0.1479 0.1295 0 j3eigvy = 0 0 -0.3520 -0.0374 -0.0322 0.0346 -0.0265 0.3638 0.0364 -0.3364 0.3501 0
Problem R.5.3
[edit | edit source]Honor Pledge:
[edit | edit source]On my honor I have neither given nor received unauthorized aid in doing this problem.
Problem Description:
[edit | edit source]We are tasked with finding the eigenvector corresponding to the eigenvalue for the same system as described in R4.1. We must also plot the mode shapes and compare with those from R4.1. Lastly we are tasked with creating an animation for each mode shape.
Given:
[edit | edit source]from Fead.s13.sec53b(4).djvu:
and, from R4.1
Solution:
[edit | edit source]
So,
Combining and reducing to row echelon form.
we may set and obtain:
Proving that they are orthogonal by ensuring the dot product between the two is zero:
The eigenvalue corresponding to this eigenvector is the smallest possible and therefore this must be a fundamental mode unlike the one from R.4.1.
Mode shape plotted in picture below as well as Matlab graph showing the mode 1 in blue and mode 2 in green. The oscillation moves from zero out to the displacement for each respective mass. It can be seen that the oscillation for mode 2 is indeed fundamental as both masses move in the same direction.
Picture is adapted from Fead.s13.sec53b(4).djvu p.53-16.
Problem 5.4 Eigenvalues and Eigenvectors for Mode Shape
[edit | edit source]On my honor, I have neither given nor recieved unauthorized aid in doing this assignment.
Problem Statement
[edit | edit source]Assume the mass density to be 5,000 . Contruct the diagonal mass matrix and find the eigenpairs. With this, design a matlab and calfem program to determine the deformation shape.
Matlab Solution
[edit | edit source]%Constants
p = 5000;
E = 100000000000;
A = 0.0001;
L = 0.3;
%Degree of Freedom
dof = zeros(25,5);
for i = 1:6
j = 2*i-1;
dof(i,:) = [i,j,j+1,j+2,j+3];
end
for i =7:12
j = i*2+1;
dof(i,:) = [i,j,j+1,j+2,j+3];
end
for i = 13:19
j = (i-12)*2-1;
dof(i,:) = [i,j,j+1,j+14,j+15];
end
for i = 20:25
j = (i-19)*2-1;
dof(i,:) = [i,j,j+1,j+16,j+17];
end
%coordinates
pos = zeros(2,14);
for i=1:7
pos(:,i) = [(i-1)*L;0];
pos(:,i+7) = [(i-1)*L;L];
end
%Connections
conn = zeros(2,25);
for i = 1:6
conn(1,i)= i;
conn(2,i)= i+1;
end
for i = 7:12
conn(1,i) = i+1;
conn(2,i) = i+2;
end
for i = 13:19
conn(1,i) = i-12;
conn(2,i) = i-5;
end
for i = 20:25;
conn(1,i) = i-19;
conn(2,i) = i-11;
end
%seperates into x and y coordinates
x = zeros(14,2);
y = zeros(14,2);
for i = 1:25
x(i,:) = [pos(1,conn(1,i)),pos(1,conn(2,i))];
y(i,:) = [pos(2,conn(1,i)),pos(2,conn(2,i))];
end
%Set up K and M matrix
K = zeros(28);
M = zeros(28);
for i = 1:25
xm = x(i,2)-x(i,1);
ym = y(i,2)-y(i,1);
L = sqrt(xm^2+ym^2);
l = xm/L;
m = ym/L;
k = E*A/L*[l^2 l*m -l^2 -l*m;l*m m^2 -l*m -m^2;-l^2 -l*m l^2 l*m;-l*m -m^2 l*m m^2;];
m = L*A*p;
m = [m/2 0 0 0;0 m/2 0 0;0 0 m/2 0;0 0 0 m/2];
Dof = dof(i,2:5);
K(Dof,Dof) = K(Dof,Dof)+k;
M(Dof,Dof) = M(Dof,Dof)+m;
end
%Makes an alternate K and M matrix to calncel rows and columns for boundary
%conditions.
Kr = K;
Mr = M;
Kr([1 15 16],:) = [];
Kr(:,[1 15 16]) = [];
Mr([1 15 16],:) = [];
Mr(:,[1 15 16]) = [];
%Find Eigenvalue and Eigenvector
[Vec Val] = eig(Kr,Mr);
Vec1 = zeros(25,1);
Vec2 = zeros(25,1);
Vec3 = zeros(25,1);
for i = 1:25
Vec1(i) = Vec(i,1);
Vec2(i) = Vec(i,2);
Vec3(i) = Vec(i,3);
end
%Insert back in the values for initial conditions.
Vec1 = [0;Vec1(1:13);0;0;Vec1(14:25)];
Vec2 = [0;Vec2(1:13);0;0;Vec2(14:25)];
Vec3 = [0;Vec3(1:13);0;0;Vec3(14:25)];
%Add the Eigenvectors to the nodes
X1 = zeros(14,1);
Y1 = zeros(14,1);
X2 = zeros(14,1);
X3 = zeros(14,1);
Y2 = zeros(14,1);
Y3 = zeros(14,1);
X = zeros(14,1);
Y = zeros(14,1);
for i = 1:14
X1(i) = Vec1((i*2)-1,1);
Y1(i) = Vec1((i*2),1);
X(i) = pos(1,i);
Y(i) = pos(2,i);
X2(i) = Vec2((i*2)-1,1);
Y2(i) = Vec2((i*2),1);
X3(i) = Vec3((i*2)-1,1);
Y3(i) = Vec3((i*2),1);
end
%plot origional shape
for i = 1:25
xc = [X(conn(1,i)),X(conn(2,i))];
yc = [Y(conn(1,i)),Y(conn(2,i))];
axis([0 2 -1 1])
plot(xc,yc)
hold on
end
X1 = X+-0.1*X1;
Y1 = Y+-0.1*Y1;
%plot mode 1
for i = 1:25
xc = [X1(conn(1,i)),X1(conn(2,i))];
yc = [Y1(conn(1,i)),Y1(conn(2,i))];
axis([0 2 -1 1])
plot(xc,yc,'r')
hold on
end
X2 = X+X2;
Y2 = Y+Y2;
X3 = X-0.9*X3;
Y3 = Y-0.9*Y3;
%plot mode 2
for i = 1:25
xc = [X2(conn(1,i)),X2(conn(2,i))];
yc = [Y2(conn(1,i)),Y2(conn(2,i))];
axis([0 2 -1 1])
plot(xc,yc,'r')
hold on
end
%plot mode 3
for i = 1:25
xc = [X3(conn(1,i)),X3(conn(2,i))];
yc = [Y3(conn(1,i)),Y3(conn(2,i))];
axis([0 2 -1 1])
plot(xc,yc,'r')
hold on
end
References for Matlab code: Team 3 Report 4 Team 7 Report 4
Mode Shapes
[edit | edit source]CALFEM Solution
[edit | edit source]function R4p4
p = 5000; %kg/m3
A = 0.01; %m2
L = 0.3; %m
h = p*A*L;
v = h;
d = (sqrt((L^2)+(L^2)))*A*p;
m = [(h/2)+(d/2)+(v/2);(h/2)+(d/2)+(v/2);
(h/2)+(v/2);(h/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(h/2)+(d/2)+(v/2);(h/2)+(h/2)+(d/2)+(v/2);
(h/2)+(v/2);(h/2)+(v/2);
(h/2)+(d/2)+(v/2);(h/2)+(d/2)+(v/2)];
M = diag(m);
Coord = [0 0;0 0.3;0.3 0;0.3 0.3;0.6 0;
0.6 0.3;0.9 0;0.9 0.3;1.2 0;1.2 0.3;
1.5 0;1.5 0.3;1.8 0;1.8 0.3];
Dof = [1 2;3 4;5 6;7 8;9 10;1 12;13 14;15 16;
17 18;19 20;21 22;23 24;25 26;27 28];
Edof = [1 1 2 5 6;2 5 6 9 10;3 9 10 13 14;4 13 14 17 18;5 17 18 21 22;
6 21 22 25 26;7 3 4 7 8;8 7 8 11 12;9 11 12 15 16;10 15 16 19 20;
11 19 20 23 24;12 23 24 27 28;13 1 2 3 4;14 5 6 7 8;15 9 10 11 12;
16 13 14 15 16;17 17 18 19 20;18 21 22 23 24;19 25 26 27 28;20 1 2 7 8;
21 5 6 11 12;22 9 10 15 16;23 13 14 19 20;24 17 18 23 24;25 21 22 27 28];
[Ex,Ey] = coordxtr(Edof,Coord,Dof,2);
K = zeros(28);
ep = [100000000000 0.01];
for i=1:25
Ke = bar2e(Ex(i,:),Ey(i,:),ep);
K = assem(Edof(i,:),K,Ke);
end
[L,X] = eigen(K,M);
eigval = L;
eigvect = X;
Three lowest eigenvalues and eigenvectors
j1eig = eigval(1) j1eigvx = eigvect(:,1) j1eigvy = eigvect(:,2) j2eig = eigval(2) j2eigvx = eigvect(:,3) j2eigvy = eigvect(:,4) j3eig = eigval(3) j3eigvx = eigvect(:,5) j3eigvy = eigvect(:,6) j1eig = -4.1672e-08 j1eigvx = -0.0018 0.0853 0.0136 0.0853 -0.0018 0.0699 0.0136 0.0699 -0.0018 0.0545 0.0136 0.0545 -0.0018 0.0391 0.0136 0.0391 -0.0018 0.0238 0.0136 0.0238 -0.0018 0.0084 0.0136 0.0084 -0.0018 -0.0070 0.0136 -0.0070 j1eigvy = -0.0485 0.0068 -0.0488 0.0068 -0.0485 0.0071 -0.0488 0.0071 -0.0485 0.0074 -0.0488 0.0074 -0.0485 0.0077 -0.0488 0.0077 -0.0485 0.0080 -0.0488 0.0080 -0.0485 0.0083 -0.0488 0.0083 -0.0485 0.0086 -0.0488 0.0086 j2eig = -1.0740e-08 j2eigvx = 0.0155 -0.0334 -0.0053 -0.0334 0.0155 -0.0127 -0.0053 -0.0127 0.0155 0.0081 -0.0053 0.0081 0.0155 0.0289 -0.0053 0.0289 0.0155 0.0496 -0.0053 0.0496 0.0155 0.0704 -0.0053 0.0704 0.0155 0.0912 -0.0053 0.0912 j2eigvy = -0.0242 0.0747 0.0200 0.0761 -0.0197 0.0156 0.0197 0.0202 -0.0092 -0.0374 0.0148 -0.0335 0.0040 -0.0572 0.0040 -0.0572 0.0148 -0.0335 -0.0092 -0.0374 0.0197 0.0202 -0.0197 0.0156 0.0200 0.0761 -0.0242 0.0747 j3eig = 1.2133e-07 j3eigvx = 0.0206 -0.0518 -0.0370 -0.0552 0.0097 0.0333 -0.0347 0.0284 -0.0031 0.0552 -0.0190 0.0633 0.0002 -0.0083 -0.0002 0.0083 0.0190 -0.0633 0.0031 -0.0552 0.0347 -0.0284 -0.0097 -0.0333 0.0370 0.0552 -0.0206 0.0518 j3eigvy = 0.0616 -0.0146 0.0727 -0.0164 0.0453 0.0010 0.0647 -0.0047 0.0125 0.0180 0.0453 0.0165 -0.0204 -0.0017 0.0204 0.0017 -0.0453 -0.0165 -0.0125 -0.0180 -0.0647 0.0047 -0.0453 -0.0010 -0.0727 0.0164 -0.0616 0.0146
Plotting the three lowest mode shapes
for j=1:3
figure
plot(eigvect(:,j));
title(['Mode Shape ',num2str(j)])
end
Problem R5.5a: Eigen vector plot for zero evals of the 2 bar truss system p.21-2 (fead.f08.mtgs.[21])
[edit | edit source]On our honor, we did this assignment on our own, without looking at the solutions in previous semesters or other online solutions.
Given: Two member zero evals
[edit | edit source]Consider a 2 member system. Plot the eigen vectors corresponding to zero evals and interpret the results.
Use standard node and element naming conventions.
Find:
[edit | edit source]1.Plot the eigen values
[edit | edit source]2.Interpret the results
[edit | edit source]Solution: Plot the eigen values and interpret
[edit | edit source]This is the general stiffness matrix for a two bar system as given.
The global stiffness matrix in numerical form match to this specific problem is as follows.
The eigen vector matrix is as follows.
The eigen vectors correspond to the columns of the eigen vector matrix shown above. The eigen value mode shapes are a linear combination of the pure mode shapes (pure rigid body and pure mechanism).
function R5_5e2
K= [9/16 (3*sqrt(3))/16 -9/16 -(3*sqrt(3))/16 0 0;
(3*sqrt(3))/16 3/16 -(3*sqrt(3))/16 -3/16 0 0;
-9/16 -(3*sqrt(3))/16 49/16 ((3*sqrt(3)-40)/16) -5/2 5/2;
-(3*sqrt(3))/16 -3/16 ((3*sqrt(3)-40)/16) 43/16 5/2 -5/2;
0 0 -5/2 5/2 5/2 -5/2;
0 0 5/2 -5/2 -5/2 5/2]
Eval=eig(K)
[V,D]=eig(K)
V
D=abs(D)
%Each column of V is a mode
for i=1:4
figure
plot(V(:,i));
title(['Mode ',num2str(i)])
end
end
As a thought experiment, we plotted the position plus the deformation derived from the eigen vector matrix. This will supply 4 shapes but they are not constrained to the boundary conditions. Applying the boundary conditions to the K matrix reduces the number of non zero eigen vector outputs to two. The results are shown below. The figure plots came from the eigen vectors in the fifth and sixth columns of the constrained eigen vector matrix. Using the other columns produced a figure that was not constrained to the fixed supports.
function R5_5e
K= [9/16 (3*sqrt(3))/16 -9/16 -(3*sqrt(3))/16 0 0;
(3*sqrt(3))/16 3/16 -(3*sqrt(3))/16 -3/16 0 0;
-9/16 -(3*sqrt(3))/16 49/16 ((3*sqrt(3)-40)/16) -5/2 5/2;
-(3*sqrt(3))/16 -3/16 ((3*sqrt(3)-40)/16) 43/16 5/2 -5/2;
0 0 -5/2 5/2 5/2 -5/2;
0 0 5/2 -5/2 -5/2 5/2]
%K_red=K([3 4],[3 4]);
K1=[0 0 0 0 0 0;
0 0 0 0 0 0;
0 0 K(3,3) K(3,4) 0 0;
0 0 K(4,3) K(4,4) 0 0;
0 0 0 0 0 0;
0 0 0 0 0 0]
[V D] = eig(K1)
N=[1 2;
2 3];
P=[0 cos(pi/6)*4 cos(pi/6)*4+cos(pi/4)*2;
0 sin(pi/6)*4 sin(pi/6)*4-sin(pi/4)*2];
for i=1:2:5
x_1((i+1)/2)=P(1,((i+1)/2))+V(i,1);
end
for i=2:2:6
y_1((i/2))=P(2,(i/2))+V(i,1);
end
%Plot deformed system with constraints
hold on
for i=1:2
l1=N(1,i);
l2=N(2,i);
x1=[x_1(l1),x_1(l2)];
y1=[y_1(l1),y_1(l2)];
axis([-1 5 -1 5])
plot(x1,y1,'b')
title(['Constrained Shape'])
hold on
end
%Plot undeformed system
for i=1:2:5
x_o((i+1)/2)=P(1,((i+1)/2));
end
for i=2:2:6
y_o((i/2))=P(2,(i/2));
end
for i=1:2
l1=N(1,i);
l2=N(2,i);
x1=[x_o(l1),x_o(l2)];
y1=[y_o(l1),y_o(l2)];
axis([-1 5 -1 5])
plot(x1,y1,'-.or')
hold on
end
end
Problem R5.5b: Eigen vector plot for zero evals of the square 3 bar truss system p.21-3 (figure a) (fead.f08.mtgs.[21])
[edit | edit source]On our honor, we did this assignment on our own, without looking at the solutions in previous semesters or other online solutions.
Given: Square 3 bar truss system
[edit | edit source]Consider a 3 member system. Plot the eigen vectors corresponding to zero evals and interpret the results.
a=b=1 E=2 A=3
Find:
[edit | edit source]1.Plot the eigen values
[edit | edit source]Use standard node and element naming conventions.
Solution: Plot the eigen values
[edit | edit source]
function R5_5ec
E=2;
A=3;
L=1;
k=(E*A)/L;
k1=k*[0 0 0 0;
0 1 0 -1;
0 0 0 0;
0 -1 0 1]
k3=k*[0 0 0 0;
0 1 0 -1;
0 0 0 0;
0 -1 0 1]
k2=k*[1 0 -1 0;
0 0 0 0;
-1 0 1 0;
0 0 0 0]
K=zeros(8,8)
K(1:4,1:4)=k1
K(5:8,5:8)=k3
Kt=zeros(8,8)
Kt(3:6,3:6)=k2
Kg=K+Kt
%boundary conditions applied
K1=[0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
0 0 Kg(3,3) Kg(3,4) Kg(3,5) Kg(3,6) 0 0;
0 0 Kg(4,3) Kg(4,4) Kg(4,5) Kg(4,6) 0 0;
0 0 Kg(5,3) Kg(5,4) Kg(5,5) Kg(5,6) 0 0;
0 0 Kg(6,3) Kg(6,4) Kg(6,5) Kg(6,6) 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0]
Kred=[Kg(3,3) Kg(3,4) Kg(3,5) Kg(3,6);
Kg(4,3) Kg(4,4) Kg(4,5) Kg(4,6);
Kg(5,3) Kg(5,4) Kg(5,5) Kg(5,6);
Kg(6,3) Kg(6,4) Kg(6,5) Kg(6,6)]
[V D] = eig(Kred)
for i=1:6
figure
plot(V(:,i));
title(['Mode ',num2str(i)])
end
end
Problem R5.6
[edit | edit source]On my honor, I have neither given nor recieved unauthorized aid in doing this assignment.
Description
[edit | edit source]We are to solve Pb-53.6 p.53-13b over again using the modal superposition method.
Given:
[edit | edit source]We are given from Pb-53.6 that:
,
, ,
, ,
,
We also know from Pb-53.9 that:
and and
Therefore, we have:
and and
Solution:
[edit | edit source]From Pb-53.9, we already know the eigenvectors. To solve the problem using superposition, we know only need to find the modal coordinates of d(t) corresponding to the mode shapes. That is to say, we need to find z so as to solve the equation:
We can get this from:
Since F(t) = 0, the above differential equation becomes homogeneous. However, we still need to find and . These can be found from the equation:
, therefore,
Remembering that , our first differential equation becomes:
Using the method of undetermined coefficients for solving differential equations, we arrive at:
We now need to find the modal coordinate initial condition using the following equaiton:
We can easily find A from:
so
Our second differential equation is:
Using the method of undetermined coefficients for solving differential equations once again, we obtain:
We now need to find the modal coordinate initial condition using the following equaiton:
We can easily find B from:
so
The solution using modal superposition can then be displayed as:
Problem R5.7: Consider the free vibration of truss system p.53-22b (fead.f13.sec53b.[21])
[edit | edit source]On our honor, we did this assignment on our own.
Given: Truss system under free vibration with applied force and zero initial velocity
[edit | edit source]Consider the truss system. The initial force is applied at node four and the force equals five.
Use standard node and element naming conventions.
Find:
[edit | edit source]1.Use 3 lowest modes to solve for the motion of the truss using modal superposition
[edit | edit source]Solution: Solve for the truss motion
[edit | edit source]K =
Columns 1 through 5
3.3839 0.8839 -2.5000 0 -0.8839 0.8839 0.8839 0 0 -0.8839 -2.5000 0 5.8839 0.8839 0 0 0 0.8839 3.3839 0 -0.8839 -0.8839 0 0 4.2678 -0.8839 -0.8839 0 -2.5000 0 0 0 -2.5000 0 -0.8839 0 0 0 0 0.8839 0 0 -0.8839 -0.8839 -2.5000 0 0 -0.8839 -0.8839 0 0 0 0 0 0 0 0 0 0 0
Columns 6 through 10
-0.8839 0 0 0 0 -0.8839 0 0 0 0 0 -2.5000 0 -0.8839 -0.8839 -2.5000 0 0 -0.8839 -0.8839 0 -0.8839 0.8839 -2.5000 0 4.2678 0.8839 -0.8839 0 0 0.8839 5.8839 -0.8839 0 0 -0.8839 -0.8839 3.3839 0 -2.5000 0 0 0 4.2678 0 0 0 -2.5000 0 4.2678 0 -2.5000 0 -0.8839 0.8839 0 0 0 0.8839 -0.8839
Columns 11 through 12
0 0 0 0 0 0 0 0 0 0 0 0 -2.5000 0 0 0 -0.8839 0.8839 0.8839 -0.8839 3.3839 -0.8839 -0.8839 0.8839
p = 2;
E = 5;
A = 0.5;
L = 1;
Ld = 1*sqrt(2);
%degree of freedom for each element
dof = zeros(10,5);
dof(1,:) = [1 1 2 3 4];
dof(2,:) = [2 1 2 5 6];
dof(3,:) = [3 3 4 5 6];
dof(4,:) = [4 5 6 9 10];
dof(5,:) = [5 5 6 7 8];
dof(6,:) = [6 3 4 9 10];
dof(7,:) = [7 3 4 7 8];
dof(8,:) = [8 7 8 9 10];
dof(9,:) = [9 9 10 11 12];
dof(10,:) = [10 7 8 11 12];
%position of each node
pos = zeros(2,6);
pos(:,1) = [0;0];
pos(:,2) = [L;0];
pos(:,3) = [L;L];
pos(:,4) = [2*L;0];
pos(:,5) = [2*L;L];
pos(:,6) = [3*L;0];
%Connections
conn = zeros(2,10);
conn(:,1) = [1;2];
conn(:,2) = [1;3];
conn(:,3) = [2;3];
conn(:,4) = [3;5];
conn(:,5) = [3;4];
conn(:,6) = [2;5];
conn(:,7) = [2;4];
conn(:,8) = [4;5];
conn(:,9) = [5;6];
conn(:,10) = [4;6];
%seperates into x and y coordinates
x = zeros(10,2);
y = zeros(10,2);
for i = 1:10
x(i,:) = [pos(1,conn(1,i)),pos(1,conn(2,i))];
y(i,:) = [pos(2,conn(1,i)),pos(2,conn(2,i))];
end
%Set up K and M matrix
K = zeros(12);
M = zeros(12);
for i = 1:10
xm = x(i,2)-x(i,1);
ym = y(i,2)-y(i,1);
L = sqrt(xm^2+ym^2);
l = xm/L;
m = ym/L;
k = E*A/L*[l^2 l*m -l^2 -l*m;l*m m^2 -l*m -m^2;-l^2 -l*m l^2 l*m;-l*m -m^2 l*m m^2;];
m = L*A*p;
m = [m/2 0 0 0;0 m/2 0 0;0 0 m/2 0;0 0 0 m/2];
Dof = dof(i,2:5);
K(Dof,Dof) = K(Dof,Dof)+k;
M(Dof,Dof) = M(Dof,Dof)+m;
end
Table of Assignments R5
[edit | edit source]Problem Assignments R5 | ||
---|---|---|
Problem # | Solved&Typed by | Reviewed by |
1 | David Bonner, Vernon Babich | All |
2 | Chad Colocar, David Bonner | All |
3 | Bryan Tobin, Tyler Wulterkens | All |
4 | Tyler Wulterkens, Vernon Babich | All |
5 | Vernon Babich, Tyler Wulterkens | All |
6 | David Bonner, Vernon Babich | All |
7 | Tyler Wulterkens, Chad Colocar, Vernon Babich | All |