University of Florida/Eml4507/s13.team3.Guzy
Problem 2.5: Finite Analysis Of A Spring System
[edit | edit source]
The free body diagram is defined by the matrix
EDU>> Edof=[1 1 2;2 2 3;3 2 3];
Next, create the load force matrix
EDU>> f=[0 100 0];
Next each element stiffness matrix is created
EDU>> K= [0 0 0;0 0 0;0 0 0]; EDU>> k=1500; EDU>> ep1=k; EDU>> ep2=2*k; EDU>> Ke1=springle(ep1); EDU>> Ke2=springle(ep2);
Now we create the global stiffness matrix
EDU>> K=assem(Edof(1,:),K,Ke2); EDU>> K=assem(Edof(2,:),K,Ke1); EDU>> K=assem(Edof(3,:),K,Ke2);
Boundary conditions are now applied
EDU>> bc=[1 0; 3 0]; EDU>> [a,r]=solveq(K,f,bc);
Displacements are found:
EDU>> ed1=extract(Edof(1,:),a) ed1 = 0 0.0133 EDU>> ed2=extract(Edof(2,:),a) ed2 = 0.0133 0 EDU>> ed3=extract(Edof(3,:),a) ed3 = 0.0133 0
Spring forces are evaluated
EDU>> es1=spring1s(ep2,ed1) es1 = 40 EDU>> es2=spring1s(ep1,ed2) es2 = -20 EDU>> es3=spring1s(ep2,ed3) es3 = -40
By hand:
In matrix form:
First we create a matrix to show the systems Degree of Freedoms.
The first column represents each spring(#1,#2,#3). The second and third column represent the connectivity of each node.
The following is a matrix of the Force vector
Next we need each element stiffness matrix for every spring:
Element stiffness matrix for Spring #1:
Element stiffness matrix for Spring #2:
Element stiffness matrix for Spring #3:
To get the global stiffness matrix, we add up each element stiffness matrix:
Plugging each matrix into Hooke's Law we obtain:
Because node one and three are attached to the wall, their displacements are zero:Now we solve the follwing equation:
Solving the System we obtain the following equations:
Simplifying the above equations we obtain:
Solving we obtain:
Plugging this value in
Using substitution for the remaining values, we obtain magnitudes of:
- ↑ http://upload.wikimedia.org/wikiversity/en/b/b1/Fead.s13.sec53a.djvu Obtained from calfem34: p.53-2b]
- ↑ http://upload.wikimedia.org/wikiversity/en/b/b1/Fead.s13.sec53a.djvu Obtained from calfem34: p.53-2b]