EGM6321 - Principles of Engineering Analysis 1, Fall 2009[ edit | edit source ]
Mtg 1: Tue, 25 Aug 09
1-1 defined as (Meeting Number) - (Slide Number)
German Transrapid Emsland 500 km/h , youtube, Uploaded by TransrapidSupporter on Feb 14, 2007
Vu-Quoc & Olson (1989) CMAME
The magnet (i.e vehicle) and structure (i.e. guideway) interaction is shown below.
Where:
y
1
(
t
)
=
{\displaystyle y^{1}(t)=\ }
nominal motion
u
1
(
s
,
t
)
=
{\displaystyle u^{1}(s,t)=\ }
axial displacement of guideway
u
2
(
s
,
t
)
=
{\displaystyle u^{2}(s,t)=\ }
transversal displacement of guideway
f
(
y
1
(
t
)
,
t
)
{\displaystyle f(y^{1}(t),t)\ }
Total time derivative of f is given as:
d
d
t
f
(
y
1
(
t
)
,
t
)
=
∂
f
∂
s
(
y
1
(
t
)
,
t
)
y
˙
1
(
t
)
+
∂
f
∂
t
(
y
1
(
t
)
,
t
)
{\displaystyle \displaystyle {\begin{aligned}{\frac {d}{dt}}f(y^{1}(t),t)={\frac {\partial f}{\partial s}}(y^{1}(t),t){\dot {y}}^{1}(t)+{\frac {\partial f}{\partial t}}(y^{1}(t),t)\end{aligned}}}
(1)
Where
y
˙
1
(
t
)
=
d
d
t
y
1
(
t
)
{\displaystyle {\dot {y}}^{1}(t)={\frac {d}{dt}}y^{1}(t)\ }
d
d
t
f
=
f
,
s
(
y
1
,
t
)
y
˙
1
+
f
,
t
(
y
1
,
t
)
{\displaystyle {\frac {d}{dt}}f=f_{,s}(y^{1},t){\dot {y}}^{1}+f_{,t}(y^{1},t)}
d
2
d
t
2
f
=
f
,
s
(
y
1
,
t
)
y
¨
1
+
f
,
s
s
(
y
1
,
t
)
(
y
˙
′
)
+
2
f
,
s
t
(
y
1
,
t
)
y
˙
1
+
f
,
t
t
(
y
1
,
t
)
{\displaystyle \displaystyle {\begin{aligned}{\frac {d^{2}}{dt^{2}}}f=f_{,s}(y^{1},t){\ddot {y}}^{1}+f_{,ss}(y^{1},t)({\dot {y}}^{'})+2f_{,st}(y^{1},t){\dot {y}}^{1}+f_{,tt}(y^{1},t)\end{aligned}}}
(2)
Where
y
˙
′
=
y
˙
2
{\displaystyle {\dot {y}}^{'}={\dot {y}}^{2}}
Coriolis forces - Dynamics
Material time derivative - Continuum Mechanics
Reynolds transport theorem - Continuum Mechanics
c
3
(
y
′
,
t
)
y
¨
1
+
c
2
(
y
1
,
t
)
(
y
˙
1
)
2
+
c
1
(
y
1
,
t
)
y
˙
1
+
c
0
(
y
1
,
t
)
=
0
{\displaystyle \displaystyle {\begin{aligned}c_{3}(y',t){\ddot {y}}^{1}+c_{2}(y^{1},t)({\dot {y}}^{1})^{2}+c_{1}(y^{1},t){\dot {y}}^{1}+c_{0}(y^{1},t)=0\end{aligned}}}
(3)
is an example of a nonlinear ordinary differential equation (ODE)