# University of Florida/Egm4313/s12.team11.gooding/R6

## R6.3

### Problem Statement

Page 491, #15,17. Plot the truncated Fourier series for n=2,4,8.

### Solution

15.

$f(x)=\left\{{\begin{matrix}-x-\pi ,-\pi Since $f(-x)=-f(x)$ , the function is odd.

$a_{0}=(1/\pi )*[-1\int _{-\pi }^{-\pi /2}(x+\pi )dx+\int _{-\pi /2}^{\pi /2}(x)dx+\int _{\pi /2}^{\pi }(\pi -x)dx]$ After simplification, $a_{0}=0$ . Using Equation (5) on page 490, the exapansion becomes;
$f(x)=8k/\pi ^{2}[sin(\pi *x/L)-sin(3\pi *x/L)/9...)$ With $L=\pi ,k=\pi /2$ this becomes;
$f(x)=4/\pi (sinx-sin(3x)/9+sin(5x)/25-sin(6x)/36....)$ for n is "odd".
This means when n is even, $f(x)=0$  17.
$f(x)=1-|x|,-1\leq x\leq 1$ $f(x)=\left\{{\begin{matrix}1+x-\pi ,-1 $a_{0}=1/2[\int _{-1}^{0}(1+x)dx+\int _{0}^{1}(1-x)dx]$ $a_{0}=1/2[1-1/2+1-1/2]$ $a_{0}=1/2$ $a_{n}=1/1[\int _{-1}^{0}(1+x)cos(n\pi *x/1)dx+\int _{0}^{1}(1-x)cos(n\pi *x/1)dx]$ Simplifying results in;
$a_{n}=2[1/(n^{2}\pi ^{2})_{(}-1)^{n}/(n^{2}\pi ^{2})]$ So,

$a_{n}=4/(n^{2}\pi ^{2})$ when n is odd.
$b_{n}=1/1[\int _{-1}^{0}(1+x)sin(n\pi *x/1)dx+\int _{0}^{1}(1-x)sin(n\pi *x/1)dx]$ Simplifying results in;

$b_{n}=0$ $f(x)=1/2+\sum _{n=0}^{\infty }4/(n^{2}\pi ^{2})*cos(n\pi *x)$ Since $a_{n}=0$ for even n, $f(x)$ becomes $f(x)=1/2$ for even n.