Welcome to the Lesson of Analytical Trigonometry
This topic deals with the analytical aspects of Trigonometry . Widely this topic covers Trigonometric Identities and Equations. And important part of this topic is trigonometry through Complex Numbers by the use of De Moivre's Law and its application.
Function
Inverse function
Reciprocal
Inverse reciprocal
sine
sin
arcsine
arcsin
cosecant
csc
arccosecant
arccsc
cosine
cos
arccosine
arccos
secant
sec
arcsecant
arcsec
tangent
tan
arctangent
arctan
cotangent
cot
arccotangent
arccot
Pythagorean trigonometric identity
sin
2
θ
+
cos
2
θ
=
1
{\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1\,}
Ratio identity
tan
θ
=
sin
θ
cos
θ
{\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}}
Each trigonometric function in terms of the other five.
Function
(
sin
θ
)
{\displaystyle (\sin \theta )}
(
cos
θ
)
{\displaystyle (\cos \theta )}
(
tan
θ
)
{\displaystyle (\tan \theta )}
(
csc
θ
)
{\displaystyle (\csc \theta )}
(
sec
θ
)
{\displaystyle (\sec \theta )}
(
cot
θ
)
{\displaystyle (\cot \theta )}
sin
θ
=
{\displaystyle \sin \theta =}
sin
θ
{\displaystyle \sin \theta \ }
±
1
−
cos
2
θ
{\displaystyle \pm {\sqrt {1-\cos ^{2}\theta }}\ }
±
tan
θ
1
+
tan
2
θ
{\displaystyle \pm {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}\ }
1
csc
θ
{\displaystyle {\frac {1}{\csc \theta }}\ }
±
sec
2
θ
−
1
sec
θ
{\displaystyle \pm {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}\ }
±
1
1
+
cot
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}\ }
cos
θ
=
{\displaystyle \cos \theta =}
±
1
−
sin
2
θ
{\displaystyle \pm {\sqrt {1-\sin ^{2}\theta }}\ }
cos
θ
{\displaystyle \cos \theta \ }
±
1
1
+
tan
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}\ }
±
csc
2
θ
−
1
csc
θ
{\displaystyle \pm {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}\ }
1
sec
θ
{\displaystyle {\frac {1}{\sec \theta }}\ }
±
cot
θ
1
+
cot
2
θ
{\displaystyle \pm {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}\ }
tan
θ
=
{\displaystyle \tan \theta =}
±
sin
θ
1
−
sin
2
θ
{\displaystyle \pm {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}\ }
±
1
−
cos
2
θ
cos
θ
{\displaystyle \pm {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}\ }
tan
θ
{\displaystyle \tan \theta \ }
±
1
csc
2
θ
−
1
{\displaystyle \pm {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}\ }
±
sec
2
θ
−
1
{\displaystyle \pm {\sqrt {\sec ^{2}\theta -1}}\ }
1
cot
θ
{\displaystyle {\frac {1}{\cot \theta }}\ }
csc
θ
=
{\displaystyle \csc \theta =}
1
sin
θ
{\displaystyle {\frac {1}{\sin \theta }}\ }
±
1
1
−
cos
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1-\cos ^{2}\theta }}}\ }
±
1
+
tan
2
θ
tan
θ
{\displaystyle \pm {\frac {\sqrt {1+\tan ^{2}\theta }}{\tan \theta }}\ }
csc
θ
{\displaystyle \csc \theta \ }
±
sec
θ
sec
2
θ
−
1
{\displaystyle \pm {\frac {\sec \theta }{\sqrt {\sec ^{2}\theta -1}}}\ }
±
1
+
cot
2
θ
{\displaystyle \pm {\sqrt {1+\cot ^{2}\theta }}\ }
sec
θ
=
{\displaystyle \sec \theta =}
±
1
1
−
sin
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1-\sin ^{2}\theta }}}\ }
1
cos
θ
{\displaystyle {\frac {1}{\cos \theta }}\ }
±
1
+
tan
2
θ
{\displaystyle \pm {\sqrt {1+\tan ^{2}\theta }}\ }
±
csc
θ
csc
2
θ
−
1
{\displaystyle \pm {\frac {\csc \theta }{\sqrt {\csc ^{2}\theta -1}}}\ }
sec
θ
{\displaystyle \sec \theta \ }
±
1
+
cot
2
θ
cot
θ
{\displaystyle \pm {\frac {\sqrt {1+\cot ^{2}\theta }}{\cot \theta }}\ }
cot
θ
=
{\displaystyle \cot \theta =}
±
1
−
sin
2
θ
sin
θ
{\displaystyle \pm {\frac {\sqrt {1-\sin ^{2}\theta }}{\sin \theta }}\ }
±
cos
θ
1
−
cos
2
θ
{\displaystyle \pm {\frac {\cos \theta }{\sqrt {1-\cos ^{2}\theta }}}\ }
1
tan
θ
{\displaystyle {\frac {1}{\tan \theta }}\ }
±
csc
2
θ
−
1
{\displaystyle \pm {\sqrt {\csc ^{2}\theta -1}}\ }
±
1
sec
2
θ
−
1
{\displaystyle \pm {\frac {1}{\sqrt {\sec ^{2}\theta -1}}}\ }
cot
θ
{\displaystyle \cot \theta \ }
Historic Shorthands
Name(s)
Abbreviation(s)
Value
versed sine, versine
versin
θ
{\displaystyle {\textrm {versin}}\,\theta \ }
vers
θ
{\displaystyle {\textrm {vers}}\,\theta \ }
1
−
cos
θ
{\displaystyle 1-\cos \theta \ }
versed cosine, vercosine, coversed sine, coversine
vercos
θ
{\displaystyle {\textrm {vercos}}\,\theta \ }
coversin
θ
{\displaystyle {\textrm {coversin}}\,\theta \ }
cvs
θ
{\displaystyle {\textrm {cvs}}\,\theta \ }
1
−
sin
θ
{\displaystyle 1-\sin \theta \ }
haversed sine, haversine
haversin
θ
{\displaystyle {\textrm {haversin}}\,\theta \ }
hav
θ
{\displaystyle {\textrm {hav}}\,\theta \ }
1
2
versin
θ
{\displaystyle {\tfrac {1}{2}}{\textrm {versin}}\ \theta \ }
haversed cosine, havercosine, hacoversed sine, hacoversine, cohaversed sine, cohaversine
havercos
θ
{\displaystyle {\textrm {havercos}}\,\theta \ }
hacoversin
θ
{\displaystyle {\textrm {hacoversin}}\,\theta \ }
cohav
θ
{\displaystyle {\textrm {cohav}}\,\theta \ }
1
2
vercos
θ
{\displaystyle {\tfrac {1}{2}}{\textrm {vercos}}\,\theta \ }
exterior secant, exsecant
exsec
θ
{\displaystyle {\textrm {exsec}}\,\theta \ }
sec
θ
−
1
{\displaystyle \sec \theta -1\ }
exterior cosecant, excosecant
excsc
θ
{\displaystyle {\textrm {excsc}}\,\theta \ }
csc
θ
−
1
{\displaystyle \csc \theta -1\ }
Symmetries
Reflected in
θ
=
0
{\displaystyle \theta =0}
Reflected in
θ
=
π
/
2
{\displaystyle \theta =\pi /2}
(co-function identities)
Reflected in
θ
=
π
{\displaystyle \theta =\pi }
sin
(
−
θ
)
=
−
sin
θ
cos
(
−
θ
)
=
+
cos
θ
tan
(
−
θ
)
=
−
tan
θ
csc
(
−
θ
)
=
−
csc
θ
sec
(
−
θ
)
=
+
sec
θ
cot
(
−
θ
)
=
−
cot
θ
{\displaystyle {\begin{aligned}\sin(-\theta )&=-\sin \theta \\\cos(-\theta )&=+\cos \theta \\\tan(-\theta )&=-\tan \theta \\\csc(-\theta )&=-\csc \theta \\\sec(-\theta )&=+\sec \theta \\\cot(-\theta )&=-\cot \theta \end{aligned}}}
sin
(
π
2
−
θ
)
=
+
cos
θ
cos
(
π
2
−
θ
)
=
+
sin
θ
tan
(
π
2
−
θ
)
=
+
cot
θ
csc
(
π
2
−
θ
)
=
+
sec
θ
sec
(
π
2
−
θ
)
=
+
csc
θ
cot
(
π
2
−
θ
)
=
+
tan
θ
{\displaystyle {\begin{aligned}\sin({\tfrac {\pi }{2}}-\theta )&=+\cos \theta \\\cos({\tfrac {\pi }{2}}-\theta )&=+\sin \theta \\\tan({\tfrac {\pi }{2}}-\theta )&=+\cot \theta \\\csc({\tfrac {\pi }{2}}-\theta )&=+\sec \theta \\\sec({\tfrac {\pi }{2}}-\theta )&=+\csc \theta \\\cot({\tfrac {\pi }{2}}-\theta )&=+\tan \theta \end{aligned}}}
sin
(
π
−
θ
)
=
+
sin
θ
cos
(
π
−
θ
)
=
−
cos
θ
tan
(
π
−
θ
)
=
−
tan
θ
csc
(
π
−
θ
)
=
+
csc
θ
sec
(
π
−
θ
)
=
−
sec
θ
cot
(
π
−
θ
)
=
−
cot
θ
{\displaystyle {\begin{aligned}\sin(\pi -\theta )&=+\sin \theta \\\cos(\pi -\theta )&=-\cos \theta \\\tan(\pi -\theta )&=-\tan \theta \\\csc(\pi -\theta )&=+\csc \theta \\\sec(\pi -\theta )&=-\sec \theta \\\cot(\pi -\theta )&=-\cot \theta \\\end{aligned}}}
Periodicity and Shifts
Shift by π/2
Shift by π Period for tan and cot
Shift by 2π Period for sin, cos, csc and sec
sin
(
π
2
+
θ
)
=
+
cos
θ
cos
(
π
2
+
θ
)
=
−
sin
θ
tan
(
π
2
+
θ
)
=
−
cot
θ
csc
(
π
2
+
θ
)
=
+
sec
θ
sec
(
π
2
+
θ
)
=
−
csc
θ
cot
(
π
2
+
θ
)
=
−
tan
θ
{\displaystyle {\begin{aligned}\sin({\tfrac {\pi }{2}}+\theta )&=+\cos \theta \\\cos({\tfrac {\pi }{2}}+\theta )&=-\sin \theta \\\tan({\tfrac {\pi }{2}}+\theta )&=-\cot \theta \\\csc({\tfrac {\pi }{2}}+\theta )&=+\sec \theta \\\sec({\tfrac {\pi }{2}}+\theta )&=-\csc \theta \\\cot({\tfrac {\pi }{2}}+\theta )&=-\tan \theta \end{aligned}}}
sin
(
π
+
θ
)
=
−
sin
θ
cos
(
π
+
θ
)
=
−
cos
θ
tan
(
π
+
θ
)
=
+
tan
θ
csc
(
π
+
θ
)
=
−
csc
θ
sec
(
π
+
θ
)
=
−
sec
θ
cot
(
π
+
θ
)
=
+
cot
θ
{\displaystyle {\begin{aligned}\sin(\pi +\theta )&=-\sin \theta \\\cos(\pi +\theta )&=-\cos \theta \\\tan(\pi +\theta )&=+\tan \theta \\\csc(\pi +\theta )&=-\csc \theta \\\sec(\pi +\theta )&=-\sec \theta \\\cot(\pi +\theta )&=+\cot \theta \\\end{aligned}}}
sin
(
2
π
+
θ
)
=
+
sin
θ
cos
(
2
π
+
θ
)
=
+
cos
θ
tan
(
2
π
+
θ
)
=
+
tan
θ
csc
(
2
π
+
θ
)
=
+
csc
θ
sec
(
2
π
+
θ
)
=
+
sec
θ
cot
(
2
π
+
θ
)
=
+
cot
θ
{\displaystyle {\begin{aligned}\sin(2\pi +\theta )&=+\sin \theta \\\cos(2\pi +\theta )&=+\cos \theta \\\tan(2\pi +\theta )&=+\tan \theta \\\csc(2\pi +\theta )&=+\csc \theta \\\sec(2\pi +\theta )&=+\sec \theta \\\cot(2\pi +\theta )&=+\cot \theta \end{aligned}}}
The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this division, you can list your name here (this can help small divisions grow and the participants communicate better; for large divisions a list of active participants is not needed).