Let Z / ( p ) ⊂ D {\displaystyle {}\mathbb {Z} /(p)\subset D} be a one-dimensional domain, D ⊆ R {\displaystyle {}D\subseteq R} of finite type and I {\displaystyle {}I} an ideal in R {\displaystyle {}R} . Suppose that localization holds and that
( S = D ∗ = D ∖ { 0 } {\displaystyle {}S=D^{*}=D\setminus \{0\}} is the multiplicative system).
f ∈ I ∗ {\displaystyle {}f\in I^{*}}