Jump to content

Template:Studies of Euler diagrams/dakota NP table

From Wikiversity
W C
32814

32826

32846

32860

32882

32884

33294

33330

33546

33570

33806

33876

34060

34116

34562

34564

36914

36948

37168

37200

37634

37648

38148

38160
5 24 32814 &3_3
3
32814
(3, 0, 2, 1)
32826
(3, 0, 1, 2)
32846
(3, 1, 2, 0)
32860
(3, 1, 0, 2)
32882
(3, 2, 1, 0)
32884
(3, 2, 0, 1)
33294
(2, 0, 3, 1)
33330
(1, 0, 3, 2)
33546
(2, 0, 1, 3)
33570
(1, 0, 2, 3)
33806
(2, 1, 3, 0)
33876
(0, 1, 3, 2)
34060
(2, 1, 0, 3)
34116
(0, 1, 2, 3)
34562
(2, 3, 1, 0)
34564
(2, 3, 0, 1)
36914
(1, 2, 3, 0)
36948
(0, 2, 3, 1)
37168
(1, 2, 0, 3)
37200
(0, 2, 1, 3)
37634
(1, 3, 2, 0)
37648
(1, 3, 0, 2)
38148
(0, 3, 2, 1)
38160
(0, 3, 1, 2)
6 24 32942 &2_2
2
32942
(3, 0, 2, 1)
32954
(3, 0, 1, 2)
32974
(3, 1, 2, 0)
32988
(3, 1, 0, 2)
33010
(3, 2, 1, 0)
33012
(3, 2, 0, 1)
35342
(2, 0, 3, 1)
41522
(1, 0, 3, 2)
35594
(2, 0, 1, 3)
41762
(1, 0, 2, 3)
35854
(2, 1, 3, 0)
50260
(0, 1, 3, 2)
36108
(2, 1, 0, 3)
50500
(0, 1, 2, 3)
36610
(2, 3, 1, 0)
36612
(2, 3, 0, 1)
45106
(1, 2, 3, 0)
53332
(0, 2, 3, 1)
45360
(1, 2, 0, 3)
53584
(0, 2, 1, 3)
45826
(1, 3, 2, 0)
45840
(1, 3, 0, 2)
54532
(0, 3, 2, 1)
54544
(0, 3, 1, 2)
5 24 33420 &4_4
4
34860
(3, 0, 2, 1)
41016
(3, 0, 1, 2)
34890
(3, 1, 2, 0)
49240
(3, 1, 0, 2)
41058
(3, 2, 1, 0)
49252
(3, 2, 0, 1)
33420
(2, 0, 3, 1)
33456
(1, 0, 3, 2)
41736
(2, 0, 1, 3)
35616
(1, 0, 2, 3)
33930
(2, 1, 3, 0)
34000
(0, 1, 3, 2)
50440
(2, 1, 0, 3)
36160
(0, 1, 2, 3)
42498
(2, 3, 1, 0)
50692
(2, 3, 0, 1)
37026
(1, 2, 3, 0)
37060
(0, 2, 3, 1)
53536
(1, 2, 0, 3)
45376
(0, 2, 1, 3)
39426
(1, 3, 2, 0)
53776
(1, 3, 0, 2)
39940
(0, 3, 2, 1)
46096
(0, 3, 1, 2)
6 24 33673 &2_2
2
41005
(3, 0, 2, 1)
34873
(3, 0, 1, 2)
49227
(3, 1, 2, 0)
34905
(3, 1, 0, 2)
49251
(3, 2, 1, 0)
41061
(3, 2, 0, 1)
41485
(2, 0, 3, 1)
35377
(1, 0, 3, 2)
33673
(2, 0, 1, 3)
33697
(1, 0, 2, 3)
50187
(2, 1, 3, 0)
35921
(0, 1, 3, 2)
34185
(2, 1, 0, 3)
34241
(0, 1, 2, 3)
50691
(2, 3, 1, 0)
42501
(2, 3, 0, 1)
53283
(1, 2, 3, 0)
45125
(0, 2, 3, 1)
37281
(1, 2, 0, 3)
37313
(0, 2, 1, 3)
53763
(1, 3, 2, 0)
39441
(1, 3, 0, 2)
46085
(0, 3, 2, 1)
39953
(0, 3, 1, 2)
7 24 34691 &2_2
2
49211
(3, 0, 2, 1)
49199
(3, 0, 1, 2)
41053
(3, 1, 2, 0)
41039
(3, 1, 0, 2)
34933
(3, 2, 1, 0)
34931
(3, 2, 0, 1)
49931
(2, 0, 3, 1)
49955
(1, 0, 3, 2)
49679
(2, 0, 1, 3)
49715
(1, 0, 2, 3)
42253
(2, 1, 3, 0)
42309
(0, 1, 3, 2)
41999
(2, 1, 0, 3)
42069
(0, 1, 2, 3)
34693
(2, 3, 1, 0)
34691
(2, 3, 0, 1)
39217
(1, 2, 3, 0)
39249
(0, 2, 3, 1)
38963
(1, 2, 0, 3)
38997
(0, 2, 1, 3)
37777
(1, 3, 2, 0)
37763
(1, 3, 0, 2)
38289
(0, 3, 2, 1)
38277
(0, 3, 1, 2)
5 24 34980 &3_3
3
34980
(3, 0, 2, 1)
41112
(3, 0, 1, 2)
35010
(3, 1, 2, 0)
49304
(3, 1, 0, 2)
41154
(3, 2, 1, 0)
49316
(3, 2, 0, 1)
35460
(2, 0, 3, 1)
41616
(1, 0, 3, 2)
43272
(2, 0, 1, 3)
43296
(1, 0, 2, 3)
35970
(2, 1, 3, 0)
50320
(0, 1, 3, 2)
51464
(2, 1, 0, 3)
51520
(0, 1, 2, 3)
44034
(2, 3, 1, 0)
51716
(2, 3, 0, 1)
45186
(1, 2, 3, 0)
53380
(0, 2, 3, 1)
57632
(1, 2, 0, 3)
57664
(0, 2, 1, 3)
47106
(1, 3, 2, 0)
57872
(1, 3, 0, 2)
55300
(0, 3, 2, 1)
58384
(0, 3, 1, 2)
6 24 34993 &1_1
1
41101
(3, 0, 2, 1)
34993
(3, 0, 1, 2)
49291
(3, 1, 2, 0)
35025
(3, 1, 0, 2)
49315
(3, 2, 1, 0)
41157
(3, 2, 0, 1)
43021
(2, 0, 3, 1)
43057
(1, 0, 3, 2)
35713
(2, 0, 1, 3)
41857
(1, 0, 2, 3)
51211
(2, 1, 3, 0)
51281
(0, 1, 3, 2)
36225
(2, 1, 0, 3)
50561
(0, 1, 2, 3)
51715
(2, 3, 1, 0)
44037
(2, 3, 0, 1)
57379
(1, 2, 3, 0)
57413
(0, 2, 3, 1)
45441
(1, 2, 0, 3)
53633
(0, 2, 1, 3)
57859
(1, 3, 2, 0)
47121
(1, 3, 0, 2)
58373
(0, 3, 2, 1)
55313
(0, 3, 1, 2)
9 24 35067 &1_1
1
49403
(3, 0, 2, 1)
49391
(3, 0, 1, 2)
41213
(3, 1, 2, 0)
41199
(3, 1, 0, 2)
35069
(3, 2, 1, 0)
35067
(3, 2, 0, 1)
53003
(2, 0, 3, 1)
62243
(1, 0, 3, 2)
52751
(2, 0, 1, 3)
62003
(1, 0, 2, 3)
44813
(2, 1, 3, 0)
62789
(0, 1, 3, 2)
44559
(2, 1, 0, 3)
62549
(0, 1, 2, 3)
36749
(2, 3, 1, 0)
36747
(2, 3, 0, 1)
47921
(1, 2, 3, 0)
56657
(0, 2, 3, 1)
47667
(1, 2, 0, 3)
56405
(0, 2, 1, 3)
46001
(1, 3, 2, 0)
45987
(1, 3, 0, 2)
54737
(0, 3, 2, 1)
54725
(0, 3, 1, 2)
9 24 35515 &3_3
3
43567
(3, 0, 2, 1)
43579
(3, 0, 1, 2)
52303
(3, 1, 2, 0)
52317
(3, 1, 0, 2)
61555
(3, 2, 1, 0)
61557
(3, 2, 0, 1)
41647
(2, 0, 3, 1)
35515
(1, 0, 3, 2)
41899
(2, 0, 1, 3)
35755
(1, 0, 2, 3)
50383
(2, 1, 3, 0)
36061
(0, 1, 3, 2)
50637
(2, 1, 0, 3)
36301
(0, 1, 2, 3)
63235
(2, 3, 1, 0)
63237
(2, 3, 0, 1)
53491
(1, 2, 3, 0)
45301
(0, 2, 3, 1)
53745
(1, 2, 0, 3)
45553
(0, 2, 1, 3)
57091
(1, 3, 2, 0)
57105
(1, 3, 0, 2)
48901
(0, 3, 2, 1)
48913
(0, 3, 1, 2)
8 24 39083 &1_1
1
61497
(3, 0, 2, 1)
52269
(3, 0, 1, 2)
61529
(3, 1, 2, 0)
43595
(3, 1, 0, 2)
52325
(3, 2, 1, 0)
43619
(3, 2, 0, 1)
62217
(2, 0, 3, 1)
53025
(1, 0, 3, 2)
49869
(2, 0, 1, 3)
49905
(1, 0, 2, 3)
62729
(2, 1, 3, 0)
44865
(0, 1, 3, 2)
42155
(2, 1, 0, 3)
42225
(0, 1, 2, 3)
50885
(2, 3, 1, 0)
42659
(2, 3, 0, 1)
56609
(1, 2, 3, 0)
47937
(0, 2, 3, 1)
39083
(1, 2, 0, 3)
39117
(0, 2, 1, 3)
53969
(1, 3, 2, 0)
39563
(1, 3, 0, 2)
46257
(0, 3, 2, 1)
40077
(0, 3, 1, 2)
7 24 39336 &3_3
3
52280
(3, 0, 2, 1)
61484
(3, 0, 1, 2)
43608
(3, 1, 2, 0)
61514
(3, 1, 0, 2)
43620
(3, 2, 1, 0)
52322
(3, 2, 0, 1)
50120
(2, 0, 3, 1)
50144
(1, 0, 3, 2)
61964
(2, 0, 1, 3)
52784
(1, 0, 2, 3)
42408
(2, 1, 3, 0)
42464
(0, 1, 3, 2)
62474
(2, 1, 0, 3)
44624
(0, 1, 2, 3)
42660
(2, 3, 1, 0)
50882
(2, 3, 0, 1)
39336
(1, 2, 3, 0)
39368
(0, 2, 3, 1)
56354
(1, 2, 0, 3)
47684
(0, 2, 1, 3)
39576
(1, 3, 2, 0)
53954
(1, 3, 0, 2)
40088
(0, 3, 2, 1)
46244
(0, 3, 1, 2)
7 24 43161 &2_2
2
43653
(3, 0, 2, 1)
43665
(3, 0, 1, 2)
52355
(3, 1, 2, 0)
52369
(3, 1, 0, 2)
61571
(3, 2, 1, 0)
61573
(3, 2, 0, 1)
43173
(2, 0, 3, 1)
43161
(1, 0, 3, 2)
43425
(2, 0, 1, 3)
43401
(1, 0, 2, 3)
51395
(2, 1, 3, 0)
51353
(0, 1, 3, 2)
51649
(2, 1, 0, 3)
51593
(0, 1, 2, 3)
63491
(2, 3, 1, 0)
63493
(2, 3, 0, 1)
57539
(1, 2, 3, 0)
57509
(0, 2, 3, 1)
57793
(1, 2, 0, 3)
57761
(0, 2, 1, 3)
60419
(1, 3, 2, 0)
60433
(1, 3, 0, 2)
59909
(0, 3, 2, 1)
59921
(0, 3, 1, 2)
8 24 43721 &0_0
0
61641
(3, 0, 2, 1)
52449
(3, 0, 1, 2)
61609
(3, 1, 2, 0)
43745
(3, 1, 0, 2)
52393
(3, 2, 1, 0)
43721
(3, 2, 0, 1)
64521
(2, 0, 3, 1)
64545
(1, 0, 3, 2)
52929
(2, 0, 1, 3)
62145
(1, 0, 2, 3)
64009
(2, 1, 3, 0)
64065
(0, 1, 3, 2)
44705
(2, 1, 0, 3)
62625
(0, 1, 2, 3)
51913
(2, 3, 1, 0)
44201
(2, 3, 0, 1)
60961
(1, 2, 3, 0)
60993
(0, 2, 3, 1)
47753
(1, 2, 0, 3)
56457
(0, 2, 1, 3)
58081
(1, 3, 2, 0)
47273
(1, 3, 0, 2)
58593
(0, 3, 2, 1)
55497
(0, 3, 1, 2)
9 24 43726 &2_2
2
52468
(3, 0, 2, 1)
61660
(3, 0, 1, 2)
43762
(3, 1, 2, 0)
61626
(3, 1, 0, 2)
43726
(3, 2, 1, 0)
52398
(3, 2, 0, 1)
53188
(2, 0, 3, 1)
62416
(1, 0, 3, 2)
64780
(2, 0, 1, 3)
64816
(1, 0, 2, 3)
44962
(2, 1, 3, 0)
62896
(0, 1, 3, 2)
64266
(2, 1, 0, 3)
64336
(0, 1, 2, 3)
44206
(2, 3, 1, 0)
51918
(2, 3, 0, 1)
48010
(1, 2, 3, 0)
56716
(0, 2, 3, 1)
61218
(1, 2, 0, 3)
61252
(0, 2, 1, 3)
47290
(1, 3, 2, 0)
58098
(1, 3, 0, 2)
55516
(0, 3, 2, 1)
58612
(0, 3, 1, 2)
12 24 44798 &2_2
2
65338
(3, 0, 2, 1)
65326
(3, 0, 1, 2)
65372
(3, 1, 2, 0)
65358
(3, 1, 0, 2)
65396
(3, 2, 1, 0)
65394
(3, 2, 0, 1)
62458
(2, 0, 3, 1)
53230
(1, 0, 3, 2)
62206
(2, 0, 1, 3)
52990
(1, 0, 2, 3)
62972
(2, 1, 3, 0)
45038
(0, 1, 3, 2)
62718
(2, 1, 0, 3)
44798
(0, 1, 2, 3)
63476
(2, 3, 1, 0)
63474
(2, 3, 0, 1)
56828
(1, 2, 3, 0)
48122
(0, 2, 3, 1)
56574
(1, 2, 0, 3)
47870
(0, 2, 1, 3)
57308
(1, 3, 2, 0)
57294
(1, 3, 0, 2)
49082
(0, 3, 2, 1)
49070
(0, 3, 1, 2)
12 24 60143 &1_1
1
65477
(3, 0, 2, 1)
65489
(3, 0, 1, 2)
65443
(3, 1, 2, 0)
65457
(3, 1, 0, 2)
65419
(3, 2, 1, 0)
65421
(3, 2, 0, 1)
64757
(2, 0, 3, 1)
64733
(1, 0, 3, 2)
65009
(2, 0, 1, 3)
64973
(1, 0, 2, 3)
64243
(2, 1, 3, 0)
64187
(0, 1, 3, 2)
64497
(2, 1, 0, 3)
64427
(0, 1, 2, 3)
63739
(2, 3, 1, 0)
63741
(2, 3, 0, 1)
61135
(1, 2, 3, 0)
61103
(0, 2, 3, 1)
61389
(1, 2, 0, 3)
61355
(0, 2, 1, 3)
60655
(1, 3, 2, 0)
60669
(1, 3, 0, 2)
60143
(0, 3, 2, 1)
60155
(0, 3, 1, 2)