Please do not use this template. Instead go to Physics equations/Equations or a subpage and transclude from there.
Call with {{PhyseqM|transcludesection=SampleName}}
used for alternative versions of the same equation
C
⊙
=
2
π
r
{\displaystyle C_{\odot }=\,2\pi r}
is the circumference of circle ;
A
⊙
=
π
r
2
{\displaystyle A_{\odot }=\,\pi r^{2}}
is its area.
A
◯
=
4
π
r
2
{\displaystyle A_{\bigcirc }=4\pi r^{2}}
is the surface area of a sphere ;
V
◯
=
4
3
π
r
3
{\displaystyle V_{\bigcirc }={\frac {4}{3}}\pi r^{3}}
is its volume.
Call with {{PhyseqM|transcludesection=CircleSphere}}
θ
=
s
r
{\displaystyle \theta ={\frac {s}{r}}}
defines angle (in radians), where s is arclength and r is radius.
Call with {{PhyseqM|transcludesection=SimpleDefinitionThetaRadians}}
sin
A
=
opposite
hypotenuse
=
a
c
.
{\displaystyle \sin A={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}={\frac {a}{\,c\,}}\,.}
(where A is the angle shown)
cos
A
=
adjacent
hypotenuse
=
b
c
.
{\displaystyle \cos A={\frac {\textrm {adjacent}}{\textrm {hypotenuse}}}={\frac {b}{\,c\,}}\,.}
tan
A
=
opposite
adjacent
=
a
b
=
sin
A
cos
A
.
{\displaystyle \tan A={\frac {\textrm {opposite}}{\textrm {adjacent}}}={\frac {a}{\,b\,}}={\frac {\sin A}{\cos A}}\,.}
Call with {{PhyseqM|transcludesection=TrigWithoutVectors}}
sin
(
sin
−
1
(
z
)
)
=
z
{\displaystyle \sin \left(\sin ^{-1}(z)\right)=z}
and
s
i
n
−
1
(
sin
θ
)
=
θ
{\displaystyle sin^{-1}\left(\sin \theta \right)=\theta }
defines the arcsine function as the inverse of the sine. Similarly,
tan
−
1
{\displaystyle \tan ^{-1}}
is called the arctangent , or the inverse tangent , and
cos
−
1
{\displaystyle \cos ^{-1}}
is called arccosine , or the inverse cosine and so forth. In general,
f
(
f
−
1
(
y
)
)
=
y
{\displaystyle f(f^{-1}(y))=y}
and
f
−
1
(
(
f
(
x
)
)
=
x
{\displaystyle f^{-1}((f(x))=x}
for any function and its inverse. Complexities occur whenever the inverse is not a true function; for example, since
tan
(
θ
)
=
tan
(
θ
+
π
)
{\displaystyle \tan(\theta )=\tan(\theta +\pi )}
, the inverse is multi-valued:
tan
−
1
(
tan
θ
)
=
θ
o
r
θ
+
π
.
{\displaystyle \tan ^{-1}(\tan \theta )=\theta \;or\;\theta +\pi \,.}
Call with {{PhyseqM|transcludesection=InverseTrigFunctions}}
Δ
f
=
f
(
x
+
Δ
x
)
−
f
(
x
)
{\displaystyle \Delta f=f\left(x+\Delta x\right)-f(x)}
, and the derivative is
Δ
f
Δ
x
→
d
f
d
x
{\displaystyle {\frac {\Delta f}{\Delta x}}\rightarrow {\frac {df}{dx}}}
in the limit that
Δ
x
→
0
{\displaystyle \Delta x\rightarrow 0}
d
d
x
f
(
g
(
x
)
)
=
d
f
d
g
d
g
d
x
{\displaystyle {\frac {d}{dx}}f\left(g(x)\right)={\frac {df}{dg}}{\frac {dg}{dx}}}
is the chain rule.
d
d
x
A
x
p
=
(
p
−
1
)
A
x
p
−
1
{\displaystyle {\frac {d}{dx}}Ax^{p}=(p-1)Ax^{p-1}}
,
d
d
x
ln
x
=
1
x
{\displaystyle {\frac {d}{dx}}\ln x={\frac {1}{x}}}
,
d
d
x
e
x
=
e
x
{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}}
,
d
d
x
sin
x
=
cos
x
{\displaystyle {\frac {d}{dx}}\sin x=\cos x}
,
d
d
x
cos
x
=
−
sin
x
{\displaystyle {\frac {d}{dx}}\cos x=-\sin x}
∫
d
f
d
x
d
x
=
f
(
x
)
+
c
{\displaystyle \int {\frac {df}{dx}}dx=f(x)+c}
expresses the fundamental theorem of calculus.
Call with {{PhyseqM|transcludesection=CalculusBasic}}
∫
a
b
f
(
x
)
d
x
≈
∑
f
(
x
j
)
Δ
x
j
{\displaystyle \int _{a}^{b}f(x)\mathrm {d} x\approx \sum f(x_{j})\Delta x_{j}}
is the Riemann sum representation of the integral of f(x) from x=a to x=b. It is the area under the curve, with contributions from f(x)<0 being negative (if a>b). The sum equals the integral in the limit that the widths of all the intervals vanish (Δxj →0).
Left sum
Right sum
Middle sum
Call with {{PhyseqM|transcludesection=RiemannSum}}
∫
a
b
f
(
x
)
d
x
≈
∑
f
(
x
j
)
Δ
x
j
{\displaystyle \int _{a}^{b}f(x)\mathrm {d} x\approx \sum f(x_{j})\Delta x_{j}}
is the Riemann sum representation of the integral of f(x) from x=a to x=b.
Call with {{PhyseqM|transcludesection=RiemannSumShort}}
The fundamental theorem of calculus allows us to construct integrals from known derivatives:
∫
a
b
A
x
n
d
x
=
{
A
n
+
1
b
n
+
1
−
A
n
+
1
a
n
+
1
}
{\displaystyle \int _{a}^{b}Ax^{n}\mathrm {d} x=\left\{{\frac {A}{n+1}}b^{n+1}-{\frac {A}{n+1}}a^{n+1}\right\}}
∫
a
b
A
x
−
1
d
x
=
A
ln
b
−
A
ln
a
=
A
ln
b
a
{\displaystyle \int _{a}^{b}Ax^{-1}\mathrm {d} x=A\ln b-A\ln a=A\ln {\frac {b}{a}}}
Call with {{PhyseqM|transcludesection=IntegrateFundamentalTheorem}}
x
=
r
cos
θ
{\displaystyle x=r\cos \theta \quad }
and
y
=
r
sin
θ
{\displaystyle y=r\sin \theta \quad }
are the x and y components of a displacement from the origin to some point. The inverse transformations are:
r
=
x
2
+
y
2
{\displaystyle r={\sqrt {x^{2}+y^{2}}}\quad }
, and
θ
=
arctan
(
y
/
x
)
{\displaystyle \theta =\arctan {(y/x)}\quad }
, which is multi-valued and therefore not a true function.
A
x
=
A
cos
θ
{\displaystyle A_{x}=A\cos \theta }
and
A
y
=
A
sin
θ
{\displaystyle A_{y}=A\sin \theta }
are called the x and y components of vector A, respectively.
|
A
→
|
=
A
x
2
+
A
y
2
=
A
{\displaystyle |{\vec {A}}|={\sqrt {A_{x}^{2}+A_{y}^{2}}}=A\quad }
is called the magnitude ,norm (or sometimes absolute value ) of vector A.
Omission of the arrow indicates that the quantity is the scalar magnitude of that vector. Another notation that distinguishes between a vector and a scalar is boldface font: A is a vector and A =
|
{\displaystyle \,|}
A
|
{\displaystyle \,|}
is the scalar magnitude.
Call with {{PhyseqM|transcludesection=VectorComponents}}
A
→
+
B
→
=
C
→
{\displaystyle {\vec {A}}+{\vec {B}}={\vec {C}}}
and
B
→
=
C
→
−
A
→
{\displaystyle {\vec {B}}={\vec {C}}-{\vec {A}}}
have geometric interpretation as vector addition and subtraction as shown in the figure. Vector addition and subtraction can also be defined through the components. For example, the following two statements are equivalent:
A
→
+
B
→
=
C
→
⇔
{\displaystyle {\vec {A}}+{\vec {B}}={\vec {C}}\Leftrightarrow }
A
x
+
B
x
=
C
x
{\displaystyle A_{x}+B_{x}=C_{x}}
AND
A
y
+
B
y
=
C
y
{\displaystyle A_{y}+B_{y}=C_{y}}
Call with {{PhyseqM|transcludesection=VectorAddition}}
right-hand rule
A
→
×
B
→
=
C
→
{\displaystyle {\vec {A}}\times {\vec {B}}={\vec {C}}}
is the cross product of
A
→
{\displaystyle {\vec {A}}}
and
B
→
{\displaystyle {\vec {B}}}
. The cross product,
C
→
{\displaystyle {\vec {C}}}
is directed perpendicular to
A
→
{\displaystyle {\vec {A}}}
and
B
→
{\displaystyle {\vec {B}}}
by the right hand rule.
|
A
→
×
B
→
|
=
C
=
|
A
B
sin
θ
|
{\displaystyle |{\vec {A}}\times {\vec {B}}|=C=|AB\sin \theta |}
wehre
θ
{\displaystyle \theta }
is the angle between vectors
A
→
{\displaystyle {\vec {A}}}
and
B
→
{\displaystyle {\vec {B}}}
.
|
A
→
×
B
→
|
=
C
{\displaystyle |{\vec {A}}\times {\vec {B}}|=C}
is also the magnitude of the of the parallelogram defined by the vectors
A
→
{\displaystyle {\vec {A}}}
and
B
→
{\displaystyle {\vec {B}}}
.
A
→
×
B
→
=
0
{\displaystyle {\vec {A}}\times {\vec {B}}=0}
if
A
→
{\displaystyle {\vec {A}}}
and
B
→
{\displaystyle {\vec {B}}}
are either parallel or antiparallel .
The unit vectors obey
x
^
×
y
^
=
z
^
{\displaystyle {\hat {x}}\times {\hat {y}}={\hat {z}}}
,
y
^
×
z
^
=
x
^
{\displaystyle {\hat {y}}\times {\hat {z}}={\hat {x}}}
, and
z
^
×
x
^
=
y
^
{\displaystyle {\hat {z}}\times {\hat {x}}={\hat {y}}}
.
Call with {{PhyseqM|transcludesection=CrossProductVisual}}
A
→
⋅
B
→
=
A
B
cos
θ
=
A
x
B
x
+
A
y
B
y
+
A
z
B
z
{\displaystyle {\vec {A}}\cdot {\vec {B}}=AB\cos \theta =A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z}\,}
is the dot product between two vectors separated in angle by θ.
Call with {{PhyseqM|transcludesection=DotProduct}}
A
→
×
B
→
⇔
C
x
=
A
y
B
z
−
A
x
B
y
and
C
y
=
A
z
B
x
−
A
x
B
z
and
C
z
=
A
x
B
y
−
A
y
B
x
.
{\displaystyle {\begin{aligned}{\vec {A}}\times {\vec {B}}\Leftrightarrow &C_{x}&=&\ A_{y}B_{z}-A_{x}B_{y}\ {\text{and}}\\&C_{y}&=&\ A_{z}B_{x}-A_{x}B_{z}\ {\text{and}}\\&C_{z}&=&\ A_{x}B_{y}-A_{y}B_{x}\ .\end{aligned}}}
Call with {{PhyseqM|transcludesection=CrossProductComponents}}
A unit vector is any vector with unit magnitude equal to one. For any nonzero vector,
V
^
=
V
→
/
V
{\displaystyle {\hat {V}}={\vec {V}}/V}
is a unit vector. An important set of unit vectors is the orthonormal basis associated with Cartesian coordinates:
i
^
⋅
i
^
=
j
^
⋅
j
^
=
k
^
⋅
k
^
=
1
{\displaystyle \mathbf {\hat {i}} \cdot \mathbf {\hat {i}} =\mathbf {\hat {j}} \cdot \mathbf {\hat {j}} =\mathbf {\hat {k}} \cdot \mathbf {\hat {k}} =1}
j
^
⋅
k
^
=
k
^
⋅
i
^
=
j
^
⋅
k
^
=
0
{\displaystyle \mathbf {\hat {j}} \cdot \mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {\hat {i}} =\mathbf {\hat {j}} \cdot \mathbf {\hat {k}} =0}
The basis vectors
(
i
^
,
j
^
,
k
^
)
{\displaystyle (\mathbf {\hat {i}} ,\mathbf {\hat {j}} ,\mathbf {\hat {k}} )}
are also written as
(
x
^
,
y
^
,
z
^
)
{\displaystyle ({\hat {x}},{\hat {y}},{\hat {z}})}
, so that any vector may be written
A
→
=
A
x
x
^
+
A
y
y
^
+
A
z
z
^
{\displaystyle {\vec {A}}=A_{x}{\hat {x}}+A_{y}{\hat {y}}+A_{z}{\hat {z}}}
. Even more elegance is achieved by labeling the directions with integers:
A
→
=
A
1
e
1
^
+
A
2
e
2
^
+
A
3
e
3
^
{\displaystyle {\vec {A}}=A_{1}{\hat {e_{1}}}+A_{2}{\hat {e_{2}}}+A_{3}{\hat {e_{3}}}}
=
Σ
A
j
e
j
^
.
{\displaystyle =\Sigma A_{j}{\hat {e_{j}}}\,.}
Call with {{PhyseqM|transcludesection=UnitVectors}}
THIS TEMPLATE HAS BEEN REMOVED
Call with {{PhyseqM|transcludesection=PathIntegralOpenClosedSurface}}