integer weight
|
w a
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
24
|
25
|
26
|
27
|
28
|
29
|
30
|
31
|
32
|
sums
|
0
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
1
|
0
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
2
|
0
|
1
|
4
|
4
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10
|
3
|
0
|
1
|
13
|
44
|
67
|
56
|
28
|
8
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218
|
4
|
0
|
1
|
40
|
360
|
1546
|
4144
|
7896
|
11408
|
12866
|
11440
|
8008
|
4368
|
1820
|
560
|
120
|
16
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64594
|
5
|
0
|
1
|
121
|
2680
|
27550
|
180096
|
866432
|
3308736
|
10453960
|
27991600
|
64472200
|
129002640
|
225783740
|
347370800
|
471435000
|
565722640
|
601080385
|
565722720
|
471435600
|
347373600
|
225792840
|
129024480
|
64512240
|
28048800
|
10518300
|
3365856
|
906192
|
201376
|
35960
|
4960
|
496
|
32
|
1
|
4294642034
|
|
(merged weights)
|
w
|
0
|
1
|
2
|
3...4
|
5...8
|
9...16
|
17...32
|
sums
|
k a
|
-1
|
0
|
1
|
2
|
3
|
4
|
5
|
0
|
1
|
1
|
|
|
|
|
|
2
|
1
|
0
|
1
|
1
|
|
|
|
|
2
|
2
|
0
|
1
|
4
|
5
|
|
|
|
10
|
3
|
0
|
1
|
13
|
111
|
93
|
|
|
218
|
4
|
0
|
1
|
40
|
1906
|
36314
|
26333
|
|
64594
|
5
|
0
|
1
|
121
|
30230
|
14809224
|
2432859005
|
1846943453
|
4294642034
|
|
summation of {{Boolf triangle Myrtle}}
rational weight:
Let C be the central column. Then C(a) + a = 2 · A069954(a−1) = A000984(2a−1) for a > 0.
integer weight:
Diagonal is A134174.
Column 2 is A003462. a(n) = (3n − 1) / 2.
merged weights:
The diagonal 1, 5, 93, 26333... is half of A037267(1...) = 2, 10, 186, 52666...