Jump to content

Talk:PlanetPhysics/Uc Locally Compact Quantum Groupoids

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: uniform continuity over locally compact quantum groupoids
%%% Primary Category Code: 00.
%%% Filename: UcLocallyCompactQuantumGroupoids.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}

\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsection{Uniform Continuity over Locally Compact Quantum Groupoids}

Let us consider \emph{locally compact quantum groupoids} ($LCQGn$) defined as {\em \htmladdnormallink{locally compact groupoids}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html} endowed with a \htmladdnormallink{Haar system}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html}}, $\nu$, $(\G,\nu):= ([\grp, G_2, \mu], \nu)$, or as derived from a {\em (\htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}) \htmladdnormallink{weak Hopf algebra}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html}} (WHA), with the additional condition of \emph{uniform continuity} over $\grp$ defined as follows . Let us also consider a space $LUC(\grp)$ of left uniformly continuous elements in $L^{\infty}(\grp)$ defined over $G_2$, which is endowed with the induced product topology from the subset $G^2$ of composable pairs in the \emph{\htmladdnormallink{topological groupoid}{http://planetphysics.us/encyclopedia/EquivalenceRelation.html}} $\grp$. This step completes the construction of uniform continuity over $LCQGn$ that can be then compared with the results obtained from `\htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html}' derived from a weak Hopf algebra.

\subsubsection{C*-algebra Comparison and Example}

Consider $LCG$ to be a \htmladdnormallink{locally compact quantum group}{http://planetphysics.us/encyclopedia/LocallyCompactQuantumGroup.html}. Then consider the space $LUC(G)$ of left uniformly continuous elements in $L^{\infty}(G)$ introduced in ref. \cite{VRunde2k8}. (The definition according to {\em V. Runde} (\em loc. cit.) covers both the space of left uniformly continuous \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} on a locally compact \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and (Granirer's) uniformly continuous functionals on the Fourier algebra.) Also consider $LUC(G)$ which is then an {\em \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} containing the \htmladdnormallink{C*-algebra}{http://planetphysics.us/encyclopedia/VonNeumannAlgebra2.html} $C_o(G)$}. One may compare the \htmladdnormallink{groupoid C*-convolution algebra}{http://planetphysics.us/encyclopedia/GroupoidCConvolutionAlgebra.html}, $G_{CA}$ -- obtained in the general case-- with the C*-algebra $C_o(G)$ obtained from $LUC(G)$ in the particular case of uniform continuity over a locally compact group.

\begin{thebibliography}{9}
\bibitem{Buneci2k3}
M. Buneci. 2003. {\em Groupoid Representations}, Publs: Ed. Mirton, Timishoara.

\bibitem{VRunde2k8}
V. Runde. 2008. Uniform continuity over locally compact quantum groups.
\htmladdnormallink{(math.OA -arxiv/0802.2053v4).}{http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.2053v4.pdf}

\end{thebibliography} 

\end{document}