Jump to content

Talk:PlanetPhysics/Theoretical Programs in Quantum Gravity

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: theoretical programs in quantum gravity
%%% Primary Category Code: 04.
%%% Filename: TheoreticalProgramsInQuantumGravity.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 There are several distinct research \htmladdnormallink{programs}{http://planetphysics.us/encyclopedia/SupercomputerArchitercture.html} aimed at developing the mathematical foundations of \htmladdnormallink{quantum gravity theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html}. These include, but are not limited to, the following.

\subsection{Mathematical Programs being Developed in Quantum Gravity}
\begin{enumerate}
\item The twistors program applied to an open curved \htmladdnormallink{space-time}{http://planetphysics.us/encyclopedia/SR.html} (see refs.
\cite{SH2k4, RP2k}), (which is presumably a globally hyperbolic, relativistic space-time).
This may also include the idea of developing a \emph{`sheaf cohomology'} for twistors (see ref.
\cite{RP2k}) but still needs to justify the assumption in this approach of a
charged, fundamental \htmladdnormallink{fermion}{http://planetphysics.us/encyclopedia/Fermion.html} of spin-3/2 of undefined \htmladdnormallink{mass}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} and unitary `homogeneity' (which
has not been observed so far);
\item The \emph{\htmladdnormallink{supergravity}{http://planetphysics.us/encyclopedia/AntiCommutationRelations.html}} theory program, which is consistent with \htmladdnormallink{supersymmetry}{http://planetphysics.us/encyclopedia/AntiCommutationRelations.html} and \htmladdnormallink{superalgebra}{http://planetphysics.us/encyclopedia/NewtonianMechanics.html}, and utilizes \emph{graded \htmladdnormallink{Lie algebras}{http://planetphysics.us/encyclopedia/BilinearMap.html}} and \emph{matter-coupled
\htmladdnormallink{superfields}{http://planetphysics.us/encyclopedia/AntiCommutationRelations.html}} in the presence of \emph{weak} gravitational \htmladdnormallink{fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html};
\item The no \htmladdnormallink{boundary}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} (closed), \emph{continuous} space-time programme (ref.
\cite{SH2k4}) in quantum cosmology, concerned with singularities, such as black
and `white' holes; S. W. Hawking combines, joins, or glues an initially flat Euclidean
\htmladdnormallink{metric}{http://planetphysics.us/encyclopedia/MetricTensor.html} with convex \htmladdnormallink{Lorentzian}{http://planetphysics.us/encyclopedia/LebesgueMeasure.html} metrics in the expanding, and then contracting, space-times with
a very small value of \htmladdnormallink{Einstein's}{http://planetphysics.us/encyclopedia/AlbertEinstein.html} \htmladdnormallink{cosmological `constant}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}'. Such Hawking, double-pear shaped,
space-times also have an initial Weyl \htmladdnormallink{tensor}{http://planetphysics.us/encyclopedia/Tensor.html} value close to zero and, ultimately, a largely
fluctuating Weyl tensor during the `final crunch' of our \htmladdnormallink{Universe}{http://planetphysics.us/encyclopedia/MultiVerses.html}, presumed to determine the
irreversible arrow of time; furthermore, an observer will always be able to access through
measurements only \emph{a limited part} of the global space-times in our universe;
\item The \htmladdnormallink{TQFT/}{http://planetphysics.us/encyclopedia/SUSY2.html} approach that aims at finding the \htmladdnormallink{topological invariants}{http://planetphysics.us/encyclopedia/ModuleAlgebraic.html} of a
\htmladdnormallink{manifold}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} embedded in an abstract \htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/VectorSpace2.html} related to the \htmladdnormallink{statistical mechanics}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html} problem of
defining extensions of the partition \htmladdnormallink{function}{http://planetphysics.us/encyclopedia/Bijective.html} for many-particle quantum \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html};
\item The string and \htmladdnormallink{superstring}{http://planetphysics.us/encyclopedia/10DBrane.html} theories/M-theory that `live' in higher dimensional
spaces (e.g., $n\geq 6$, preferred $n-dim =11$), and can be considered to be \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of physical entities that vibrate, are quantized, interact, and that might also be able to predict fundamental masses relevant to \htmladdnormallink{quantum particles}{http://planetphysics.us/encyclopedia/QuantumParticle.html};
\item The `\htmladdnormallink{categorification}{http://planetphysics.us/encyclopedia/Categorification3.html}' and \htmladdnormallink{groupoidification}{http://planetphysics.us/encyclopedia/Cod.html} programs (\cite{BAJ-DJ98b,BAJ-DJ2k1}) that aims to deal with \htmladdnormallink{quantum field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} and \htmladdnormallink{QG}{http://planetphysics.us/encyclopedia/SUSY2.html} problems at the abstract level of \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} and \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/Functor.html} in what seems to be mostly a global approach;
\item The `monoidal category' and valuation approach initiated by Isham to the \htmladdnormallink{quantum measurement}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} problem and its possible solution through local-to-global, finite constructions in \htmladdnormallink{small categories}{http://planetphysics.us/encyclopedia/SmallCategory.html}.
\end{enumerate}

\begin{thebibliography}{9}

\bibitem{SH2k4}
S.Hawkings. 2004. \emph{The beginning of time}.

\bibitem{RP2k}
R. Penrose. 2000. {Shadows of the mind.}, Cambridge University Press: Cambridge, UK.

\bibitem{BAJ-DJ98b}
Baez, J. and Dolan, J., 1998b, \emph{``Categorification'', Higher Category Theory, Contemporary Mathematics},
\textbf{230}, Providence: \emph{AMS}, 1-36.

\bibitem{BAJ-DJ2k1}
Baez, J. and Dolan, J., 2001, From Finite Sets to Feynman Diagrams, in \emph{Mathematics Unlimited -- 2001 and Beyond}, Berlin: Springer, pp. 29--50.


\end{thebibliography} 

\end{document}