Talk:PlanetPhysics/Theorem on CW Complex Approximation of Quantum State Spaces in QAT
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: theorem on CW--complex approximation of quantum state spaces in QAT
%%% Primary Category Code: 00.
%%% Filename: TheoremOnCWComplexApproximationOfQuantumStateSpacesInQAT.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\textbf{\htmladdnormallink{theorem}{http://planetphysics.us/encyclopedia/Formula.html} 1.}
Let $[QF_j]_{j=1,...,n}$ be a complete sequence of commuting \htmladdnormallink{quantum spin `foams}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html}' (QSFs) in an arbitrary \htmladdnormallink{quantum state space (QSS)}{http://planetphysics.us/encyclopedia/QuantumSpaceTimes.html}, and let $(QF_j,QSS_j)$ be the corresponding sequence of pair subspaces of \htmladdnormallink{QST}{http://planetphysics.us/encyclopedia/SUSY2.html}. If $Z_j$ is a sequence of CW-complexes such that for any
$j$ , $QF_j \subset Z_j$, then there exists a sequence of $n$-connected models $(QF_j,Z_j)$ of
$(QF_j,QSS_j)$ and a sequence of induced \htmladdnormallink{isomorphisms}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} ${f_*}^j : \pi_i (Z_j)\rightarrow \pi_i (QSS_j)$
for $i>n$, together with a sequence of induced \htmladdnormallink{monomorphisms}{http://planetphysics.us/encyclopedia/InjectiveMap.html} for $i=n$.
\begin{remark}
There exist \emph{weak} \htmladdnormallink{homotopy}{http://planetphysics.us/encyclopedia/ThinEquivalence.html} equivalences between each $Z_j$ and $QSS_j$ spaces
in such a sequence. Therefore, there exists a $CW$--complex approximation of \htmladdnormallink{QSS}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} defined by the sequence
$[Z_j]_{j=1,...,n}$ of CW-complexes with dimension $n \geq 2$. This $CW$--approximation is
unique up to \emph{\htmladdnormallink{regular}{http://planetphysics.us/encyclopedia/CoIntersections.html}} homotopy equivalence.
\end{remark}
\textbf{Corollary 2.}
\emph{The $n$-connected models} $(QF_j,Z_j)$ of $(QF_j,QSS_j)$ form the \emph{Model \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html}} of
\htmladdnormallink{Quantum Spin Foams}{http://planetphysics.us/encyclopedia/SpinNetworksAndSpinFoams.html} $(QF_j)$, \emph{whose \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} are maps $h_{jk}: Z_j \rightarrow Z_k$ such that $h_{jk}\mid QF_j = g: (QSS_j, QF_j) \rightarrow (QSS_k,QF_k)$, and also such that the following \htmladdnormallink{diagram}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is commutative:} \\
$
\begin{CD}
Z_j @> f_j >> QSS_j
\\ @V h_{jk} VV @VV g V
\\ Z_k @ > f_k >> QSS_k
\end{CD}
$
\\
\emph{Furthermore, the maps $h_{jk}$ are unique up to the homotopy rel $QF_j$ , and also rel $QF_k$}.
\begin{remark}
{Theorem 1} complements other data presented in the \htmladdnormallink{parent entry on QAT}{http://planetphysics.us/encyclopedia/QuantumAlgebraicTopology.html}.
\end{remark}
\end{document}