Talk:PlanetPhysics/Supercategory of Variable Molecular Sets

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: supercategory of variable molecular sets
%%% Primary Category Code: 00.
%%% Filename: SupercategoryOfVariableMolecularSets.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \begin{definition}
A \emph{supercategory of variable molecular sets (or \htmladdnormallink{molecular set variables}{http://planetphysics.us/encyclopedia/ChemicalTransformations.html})}, $\S_{msv}$ is defined
as the \htmladdnormallink{supercategory}{http://planetphysics.us/encyclopedia/SuperCategory6.html} whose class of \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is the class of all possible variable molecular sets, $msv$'s, (or molecular set variables), and whose class of \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is the class of all \htmladdnormallink{molecular transformations}{http://planetphysics.us/encyclopedia/Molecule.html}, \textbf{$\eta_t$}, of $msv$'s.
\end{definition}

\textbf{Remark}
All such $msv$--supercategories are semantic interpretations of the \htmladdnormallink{ETAS axioms}{http://planetphysics.us/encyclopedia/ETACAxioms.html} (syntax).
This is a mathematical \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of chemical reaction \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} in terms of molecular sets that vary with time (or $msv$'s, and their transformations as a result of diffusion, \htmladdnormallink{collisions}{http://planetphysics.us/encyclopedia/Collision.html}, and chemical reactions.

\begin{thebibliography}{9}

\bibitem{BAF60}
Bartholomay, A. F.: 1960. Molecular Set Theory. A mathematical representation for chemical reaction mechanisms. \emph{Bull. Math. Biophys.}, \textbf{22}: 285-307.

\bibitem{BAF65}
Bartholomay, A. F.: 1965. Molecular Set Theory: II. An aspect of biomathematical theory of sets., \emph{Bull. Math. Biophys.} \textbf{27}: 235-251.

\bibitem{BAF71}
Bartholomay, A.: 1971. Molecular Set Theory: III. The Wide-Sense Kinetics of Molecular Sets ., \emph{Bulletin of Mathematical Biophysics}, \textbf{33}: 355-372.

\bibitem{ICB2}
Baianu, I. C.: 1983, Natural Transformation Models in Molecular Biology., in \emph{Proceedings of the SIAM Natl. Meet}., Denver, CO.; Eprint No. 3675 at cogprints.org/3675/01 as ``Naturaltransfmolbionu6.pdf''.

\bibitem{ICB3}
I.C. Baianu: 1970, Organismic Supercategories: II. On Multistable Systems. \emph{Bulletin of Mathematical Biophysics}, \textbf{32}: 539-561.

\bibitem{BBGG1}
I.C. Baianu, Brown R., J. F. Glazebrook, and Georgescu G.: 2006, Complex Nonlinear Biodynamics in
Categories, Higher Dimensional Algebra and \L{}ukasiewicz--Moisil Topos: Transformations of
Neuronal, Genetic and Neoplastic networks, \emph{Axiomathes} \textbf{16} Nos. 1--2, 65--122.

\bibitem{ICB7}
I.C. Baianu: 1980, Natural Transformations of Organismic Structures. \emph{Bulletin of Mathematical
Biophysics} \textbf{42}: 431-446.

\bibitem{ICB9}
I.C. Baianu: 1984, A Molecular-Set-Variable Model of Structural and Regulatory Activities in Metabolic and Genetic Networks., \emph{FASEB Proceedings} \textbf{43}, 917.

\end{thebibliography} 

\end{document}