Talk:PlanetPhysics/Qubit2

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: qubit and qudit
%%% Primary Category Code: 00.
%%% Filename: Qubit2.tex
%%% Version: 13
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble. as your 
% almost certainly you want these

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}

% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 Whereas in a classical \htmladdnormallink{computer}{http://planetphysics.us/encyclopedia/SupercomputerArchitercture.html} the bit is the unit of information, in a quantum
device called a \htmladdnormallink{quantum computer}{http://en.wikipedia.org/wiki/File:Quantum_computer.jpg}--which is a special \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} of quantum automaton-- this is replaced by a corresponding \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} called qubit.

\begin{definition}
A {\em qubit, qbit} or {\em quantum bit} is defined as the unit of quantum information which is contained in a quantum \htmladdnormallink{state vector}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} for a two-level quantum system consisting of only two \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} levels; mathematically this is expressed as a \htmladdnormallink{unit vector}{http://planetphysics.us/encyclopedia/PureState.html} $\Psi$ in a a \htmladdnormallink{two-dimensional}{http://planetphysics.us/encyclopedia/CoriolisEffect.html} \htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $\mathbb{C}^2$ over the \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} of complex numbers $\mathbb{C}$.
\end{definition}

In order to have any practical use such a qubit must also meet several conditions, such as: it has to be measurable, undergo controlled unitary transformations, have a long coherence time, be capable of initialization,
and so on. Scalability to a \htmladdnormallink{quantum state space}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} $\mathbb{C}^n$ of $n \times 1$ column \htmladdnormallink{vectors}{http://planetphysics.us/encyclopedia/Vectors.html} with the \htmladdnormallink{inner product}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $(x,y) = x\dagger{}y$ is also such a condition, where $A\dagger{}$ denotes the transpose conjugate of $A$. Then a unit vector $\psi$ in $\mathbb{C}^n$ denotes a quantum state. As an example, in a superconducting flux qubit an electric current can be imagined to circulate simultaneously in a stable (or coherent) loop both clockwise and counterclockwise. A qubit in such a superposition is in a highly symmetrical quantum state. Superconducting qubits involve large numbers of \htmladdnormallink{particles}{http://planetphysics.us/encyclopedia/Particle.html} (\htmladdnormallink{Cooper pairs}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html}) as the superconducting current involves many billions of such coherent electron pairs. In such a many-particle superconducting loop, \htmladdnormallink{spontaneous symmetry breaking}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} tends to determine the qubit to end up in a definite state, by `breaking up the superposition'. On the other hand, an ion suspended in a magnetic trap or a single electron in a quantum dot on a chip
do not exhibit this phenomenon. In August 2005, a \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of physicists at the National Institute of Standards and Technology (NIST) suceeded in preparing single-ion qubits with a coherence time longer than 10 seconds.


\begin{definition}
A {\em qudit} is defined as the unit of quantum information in a $d$-level quantum \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} $\mathbb{C}^d$ which is contained in the unit vector in a vector space $\mathbb{C}^d$ of dimension $d$.
\end{definition}

Furthermore, one can define as follows a more complex concept than the qudit by allowing for entanglement of quantum states.
\begin{definition}
A {\em quantum register} $\mathcal{R}_g$ consists, or is determined by, a number $r$ of entangled qubits.
\end{definition}

\htmladdnormallink{Quantum computers}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} could then perform calculations by manipulating qubits within a quantum register. However, the requirement for long coherence times may be a major obstacle to building quantum computers \cite{Collins2k5}.

\begin{thebibliography}{9}
\bibitem{Collins2k5}
Graham P. Collins.,October 17, 2005, Quantum Bug: Qubits might spontaneously decay in seconds. {\em Scientific American}
\end{thebibliography} 

\end{document}