Jump to content

Talk:PlanetPhysics/Quantum Operator Algebras in QFT2

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Quantum operator algebras in QFT
%%% Primary Category Code: 00.
%%% Filename: QuantumOperatorAlgebrasInQFT2.tex
%%% Version: 7
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\usepackage{syntonly}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{maplestd2e}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram  #1  \rto^{#2} \dto_{#4}&
#3  \dto^{#5} \\ #6    \rto_{#7}  &  #8   \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
 \end{pmatrix}}
\def\D{\mathsf{D}}

\syntaxonly
\begin{document}

 \subsection{Introduction}
This is a topic entry that introduces \htmladdnormallink{quantum operator algebras}{http://planetphysics.us/encyclopedia/Groupoid.html} and presents concisely the important
roles they play in quantum field theories.

\begin{definition} {\em Quantum operator algebras} (QOA) in quantum field theories are defined as the algebras of \htmladdnormallink{observable}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html}, and as such, they are also related to the von Neumann algebra;
quantum operators are usually defined on \htmladdnormallink{Hilbert spaces}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}, or in some QFTs on \htmladdnormallink{Hilbert space bundles}{http://planetphysics.us/encyclopedia/HilbertBundle.html} or other similar families of spaces.
\end{definition}

\begin{remark}
{\em \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of Banach $*$-algebras}-- that are defined on Hilbert spaces-- are closely related to C* -algebra representations which provide a useful approach to defining \htmladdnormallink{quantum space-times}{http://planetphysics.us/encyclopedia/SUSY2.html}.
\end{remark}

\subsection{Quantum operator algebras in quantum field theories: QOA Role in QFTs}

Important examples of quantum operators are: the \htmladdnormallink{Hamiltonian operator}{http://planetphysics.us/encyclopedia/HamiltonianOperator3.html} (or \htmladdnormallink{Schr\"odinger operator}{http://planetphysics.us/encyclopedia/Hamiltonian2.html}), the \htmladdnormallink{position}{http://planetphysics.us/encyclopedia/Position.html} and \htmladdnormallink{momentum}{http://planetphysics.us/encyclopedia/Momentum.html} operators, Casimir operators, unitary operators and \htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} operators. The observable operators are also {\em self-adjoint}. More general operators were recently defined, such as Prigogine's superoperators.

Another development in quantum theories was the introduction of Frech\'et nuclear spaces or `\htmladdnormallink{rigged' Hilbert spaces}{http://planetphysics.us/encyclopedia/I3.html} (Hilbert space {\em bundles}). The following \htmladdnormallink{sections}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} define several \htmladdnormallink{types}{http://planetphysics.us/encyclopedia/Bijective.html} of quantum operator algebras that provide the foundation of modern quantum field theories in \htmladdnormallink{mathematical physics}{http://planetphysics.us/encyclopedia/PhysicalMathematics2.html}.


\subsubsection{Quantum groups; quantum operator algebras and related symmetries.}

Quantum theories adopted a new lease of life post 1955 when von Neumann beautifully re-formulated \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html} (\htmladdnormallink{QM}{http://planetphysics.us/encyclopedia/FTNIR.html}) and quantum theories (QT) in the mathematically rigorous context of Hilbert spaces and operator
algebras defined over such spaces. From a current physics perspective,
von Neumann' s approach to quantum mechanics has however done much more: it has
not only paved the way to expanding the role of symmetry in physics, as for example with the Wigner-Eckhart \htmladdnormallink{theorem}{http://planetphysics.us/encyclopedia/Formula.html} and its applications, but also revealed the fundamental importance in quantum physics of the \htmladdnormallink{state space}{http://planetphysics.us/encyclopedia/StableAutomaton.html} geometry of quantum operator algebras.


\subsection{Basic mathematical definitions in QOA: }

\begin{itemize}
\item {\em Von Neumann algebra}

\item {\em Hopf algebra}

\item {\em Groupoids}

\item {\em Haar systems associated to measured groupoids or \htmladdnormallink{locally compact groupoids}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html}.}
\item \htmladdnormallink{C*-algebras}{http://planetphysics.us/encyclopedia/VonNeumannAlgebra2.html} and \htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html} entry (attached).
\end{itemize}

\subsubsection{Von Neumann algebra}

Let $\H$ denote a complex (separable) Hilbert space. A \emph{von Neumann algebra} $\A$ acting on $\H$ is a subset of the algebra of all bounded operators $\cL(\H)$ such that:

\begin{itemize}
\item (i) $\A$ is closed under the adjoint \htmladdnormallink{operation}{http://planetphysics.us/encyclopedia/Cod.html} (with the
adjoint of an element $T$ denoted by $T^*$).
\item (ii) $\A$ equals its \htmladdnormallink{bicommutant}{http://planetphysics.us/encyclopedia/CoordinateSpace.html}, namely:
\begin{equation}
\A= \{A \in \cL(\H) : \forall B \in \cL(\H), \forall C\in \A,~
(BC=CB)\Rightarrow (AB=BA)\}.
\end{equation}
\end{itemize}

If one calls a \emph{\htmladdnormallink{commutant}{http://planetphysics.us/encyclopedia/CoordinateSpace.html}} of a set $\A$ the special set of
bounded operators on $\cL(\H)$ which \htmladdnormallink{commute}{http://planetphysics.us/encyclopedia/Commutator.html} with all elements in
$\A$, then this second condition implies that the commutant of the
commutant of $\A$ is again the set $\A$.

On the other hand, a von Neumann algebra $\A$ inherits a
\emph{unital} subalgebra from $\cL(\H)$, and according to the
first condition in its definition $\A$, it does indeed inherit a
$*$-subalgebra structure as further explained in the next
section on C* -algebras. Furthermore, one also has available a notable
\emph{`bicommutant theorem'} which states that: ``{\em $\A$ is a von
Neumann algebra if and only if $\A$ is a $*$-subalgebra of
$\cL(\H)$, closed for the smallest topology defined by continuous
maps $(\xi,\eta)\longmapsto (A\xi,\eta)$ for all $<A\xi,\eta)>$
where $<.,.>$ denotes the inner product defined on $\H$}~''.

For a well-presented treatment of the geometry of the state spaces of quantum operator algebras, the reader is referred to Aflsen and Schultz (2003; \cite{AS2k3}).


\subsubsection{Hopf algebra}
First, a unital associative algebra consists of a linear space
$A$ together with two linear maps:

\begin{equation}
\begin{aligned} m &: A \otimes A \lra A~,~(multiplication) \\
\eta &: \bC \lra A~,~ (unity)
\end{aligned}
\end{equation}
satisfying the conditions
\begin{equation}
\begin{aligned}
m(m \otimes \mathbf 1) &= m (\mathbf 1 \otimes m)  \\  m(\mathbf 1
\otimes \eta) &= m (\eta \otimes \mathbf 1) = \ID~.
\end{aligned}
\end{equation}
This first condition can be seen in terms of a commuting \htmladdnormallink{diagram}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}~:
\begin{equation}
\begin{CD}
A \otimes A \otimes A @> m \otimes \ID>> A \otimes A
\\ @V \ID \otimes mVV   @VV m V
\\ A \otimes A  @ > m >> A
\end{CD}
\end{equation}

Next suppose we consider `reversing the arrows', and take an
algebra $A$ equipped with a linear homorphisms $\Delta : A \lra A
\otimes A$, satisfying, for $a,b \in A$ :

\begin{equation}
\begin{aligned} \Delta(ab) &= \Delta(a) \Delta(b)
\\ (\Delta \otimes \ID) \Delta &= (\ID \otimes \Delta) \Delta~.
\end{aligned}
\end{equation}

We call $\Delta$ a \emph{comultiplication}, which is said to be
\emph{coasociative} in so far that the following diagram commutes
\begin{equation}
\begin{CD}
A \otimes A \otimes A @< \Delta\otimes \ID<< A \otimes A
\\ @A \ID \otimes \Delta AA  @AA \Delta A
\\ A \otimes A  @ < \Delta << A
\end{CD}
\end{equation}

There is also a counterpart to $\eta$, the \emph{counity} map
$\vep : A \lra \bC$ satisfying
\begin{equation}
(\ID \otimes \vep) \circ \Delta = (\vep \otimes \ID) \circ \Delta
= \ID~.
\end{equation}

A \emph{bialgebra} $(A, m, \Delta, \eta,\vep)$ is a linear space $A$ with maps $m, \Delta, \eta, \vep$
satisfying the above properties.

Now to recover anything resembling a \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} structure, we must
append such a bialgebra with an antihomomorphism $S : A \lra A$,
satisfying $S(ab) = S(b) S(a)$, for $a,b \in A$~. This map is
defined implicitly via the property~:
\begin{equation} m(S \otimes
\ID) \circ \Delta = m(\ID \otimes S) \circ \Delta = \eta \circ
\vep~~.
\end{equation}

We call $S$ the \emph{antipode map}.

A \emph{Hopf algebra} is then a bialgebra $(A,m, \eta, \Delta, \vep)$ equipped with an antipode
map $S$.

Commutative and \htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} Hopf algebras form the backbone of
\htmladdnormallink{quantum `groups}{http://planetphysics.us/encyclopedia/QuantumGroup4.html}' and are essential to the generalizations of
symmetry. Indeed, in most respects a quantum `group' is closely related to its dual Hopf algebra; in the case of a finite, commutative quantum group its dual Hopf algebra is obtained via Fourier transformation of the group elements. When Hopf algebras are actually associated with their dual, proper groups of \htmladdnormallink{matrices}{http://planetphysics.us/encyclopedia/Matrix.html}, there is considerable scope for their representations on both finite and infinite dimensional Hilbert spaces.


\subsubsection{Groupoids}

Recall that a \emph{groupoid} $\grp$ is, loosely speaking, a \htmladdnormallink{small category}{http://planetphysics.us/encyclopedia/Cod.html} with inverses over its set of \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $X = Ob(\grp)$~. One
often writes $\grp^y_x$ for the set of \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in $\grp$ from
$x$ to $y$~. \emph{A \htmladdnormallink{topological groupoid}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html}} consists of a space
$\grp$, a distinguished subspace $\grp^{(0)} = \obg \subset \grp$,
called {\it the space of objects} of $\grp$, together with maps
\begin{equation}
r,s~:~ \xymatrix{ \grp \ar@<1ex>[r]^r \ar[r]_s & \grp^{(0)} }
\end{equation}
called the {\it range} and {\it \htmladdnormallink{source maps}{http://planetphysics.us/encyclopedia/SmallCategory.html}} respectively,
together with a law of \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} \begin{equation}
\circ~:~ \grp^{(2)}: = \grp \times_{\grp^{(0)}} \grp = \{
~(\gamma_1, \gamma_2) \in \grp \times \grp ~:~ s(\gamma_1) =
r(\gamma_2)~ \}~ \lra ~\grp~,
\end{equation}
such that the following hold~:~
\begin{enumerate}
\item[(1)]
$s(\gamma_1 \circ \gamma_2) = r(\gamma_2)~,~ r(\gamma_1 \circ
\gamma_2) = r(\gamma_1)$~, for all $(\gamma_1, \gamma_2) \in
\grp^{(2)}$~.

\item[(2)]
$s(x) = r(x) = x$~, for all $x \in \grp^{(0)}$~.

\item[(3)]
$\gamma \circ s(\gamma) = \gamma~,~ r(\gamma) \circ \gamma =
\gamma$~, for all $\gamma \in \grp$~.

\item[(4)]
$(\gamma_1 \circ \gamma_2) \circ \gamma_3 = \gamma_1 \circ
(\gamma_2 \circ \gamma_3)$~.

\item[(5)]
Each $\gamma$ has a two--sided inverse $\gamma^{-1}$ with $\gamma
\gamma^{-1} = r(\gamma)~,~ \gamma^{-1} \gamma = s (\gamma)$~.
Furthermore, only for topological groupoids the inverse map needs be continuous.
It is usual to call $\grp^{(0)} = Ob(\grp)$ {\it the set of objects}
of $\grp$~. For $u \in Ob(\grp)$, the set of arrows $u \lra u$ forms a
group $\grp_u$, called the \emph{isotropy group of $\grp$ at $u$}.
\end{enumerate}

Thus, as it is well kown, a topological groupoid is just a groupoid internal to the \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} spaces and continuous maps. The notion of internal groupoid has proved significant in a number of \htmladdnormallink{fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}, since groupoids generalise bundles of groups, group actions, and \htmladdnormallink{equivalence relations}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}. For a further study of groupoids we refer the reader to Brown (2006).


Several examples of groupoids are:
\begin{itemize}
\item (a) locally compact groups, transformation groups , and any group in general (e.g. [59]
\item (b) equivalence relations
\item (c) tangent bundles
\item (d) the \htmladdnormallink{tangent groupoid}{http://planetphysics.us/encyclopedia/MoyalDeformation.html} \item (e) holonomy groupoids for foliations
\item (f) Poisson groupoids
\item (g) \htmladdnormallink{graph}{http://planetphysics.us/encyclopedia/Cod.html} groupoids.
\end{itemize}

As a simple, helpful example of a groupoid, consider (b) above. Thus, let \textit{R} be an \textit{equivalence \htmladdnormallink{relation}}{http://planetphysics.us/encyclopedia/Bijective.html} on a set X. Then \textit{R} is a groupoid under the following operations:
$(x, y)(y, z) = (x, z), (x, y)^{-1} = (y, x)$. Here, $\grp^0 = X $, (the diagonal of $X \times X$ ) and $r((x, y)) = x,  s((x, y)) = y$.

Therefore, $ R^2$ = $\left\{((x, y), (y, z)) : (x, y), (y, z) \in R \right\} $.
When $R = X \times X $, \textit{R} is called a \textit{trivial} groupoid. A special case of a \htmladdnormallink{trivial groupoid}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is
$R = R_n = \left\{ 1, 2, . . . , n \right\}$ $\times $ $\left\{ 1, 2, . . . , n \right\} $. (So every \textit{i} is equivalent to every \textit{j}). Identify $(i,j) \in R_n$ with the matrix unit $e_{ij}$. Then the groupoid $R_n$ is just \htmladdnormallink{matrix multiplication}{http://planetphysics.us/encyclopedia/Matrix.html} except that we only multiply $e_{ij}, e_{kl}$ when $k = j$, and $(e_{ij} )^{-1} = e_{ji}$. We do not really lose anything by restricting the multiplication, since the pairs $e_{ij}, {e_{kl}}$ excluded from groupoid multiplication just give the 0 product in normal algebra anyway.
For a groupoid $\grp_{lc}$ to be a locally compact groupoid means that $\grp_{lc}$ is required to be a (second countable) \htmladdnormallink{locally compact Hausdorff space}{http://planetphysics.us/encyclopedia/LocallyCompactHausdorffSpaces.html}, and the product and also inversion maps are required to be continuous. Each $\grp_{lc}^u$ as well as the unit space $\grp_{lc}^0$ is closed in $\grp_{lc}$. What replaces the left \htmladdnormallink{Haar measure}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html} on $\grp_{lc}$ is a \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} of measures $\lambda^u$ ($u \in \grp_{lc}^0$), where $\lambda^u$ is a positive \htmladdnormallink{regular}{http://planetphysics.us/encyclopedia/CoIntersections.html} Borel measure on $\grp_{lc}^u$ with dense support. In addition, the $\lambda^u~$ 's are required to vary continuously (when integrated against $f \in C_c(\grp_{lc}))$ and to form an invariant family in the sense that for each x, the map $y \mapsto xy$ is a measure preserving \htmladdnormallink{homeomorphism}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} from $\grp_{lc}^s(x)$ onto $\grp_{lc}^r(x)$. Such a system $\left\{ \lambda^u \right\}$ is called a \textit{left Haar system} for the locally compact groupoid $\grp_{lc}$.

This is defined more precisely in the next subsection.

\subsection{Haar systems for locally compact topological groupoids}

Let
\begin{equation}
\xymatrix{ \grp \ar@<1ex>[r]^r \ar[r]_s & \grp^{(0)}}=X
\end{equation}
be a locally compact, locally trivial topological groupoid with
its transposition into transitive (connected) components. Recall
that for $x \in X$, the \emph{costar of $x$} denoted
$\rm{CO}^*(x)$ is defined as the closed set $\bigcup\{ \grp(y,x) :
y \in \grp \}$, whereby
\begin{equation}
\grp(x_0, y_0) \hookrightarrow \rm{CO}^*(x) \lra X~,
\end{equation}
is a principal $\grp(x_0, y_0)$--bundle relative to
fixed base points $(x_0, y_0)$~. Assuming all relevant sets are
locally compact, then following Seda (1976), a \emph{(left) Haar
system on $\grp$} denoted $(\grp, \tau)$ (for later purposes), is
defined to comprise of i) a measure $\kappa$ on $\grp$, ii) a
measure $\mu$ on $X$ and iii) a measure $\mu_x$ on $\rm{CO}^*(x)$
such that for every Baire set $E$ of $\grp$, the following hold on
setting $E_x = E \cap \rm{CO}^*(x)$~:
\begin{itemize}
\item[(1)] $x \mapsto \mu_x(E_x)$ is measurable.
\item[(2)]
$\kappa(E) = \int_x \mu_x(E_x)~d\mu_x$ ~.
\item[(3)]
$\mu_z(t E_x) = \mu_x(E_x)$, for all $t \in \grp(x,z)$ and $x, z
\in \grp$~.
\end{itemize}

The presence of a left Haar system on $\grp_{lc}$ has important
topological implications: it requires that the range map $r :
\grp_{lc} \rightarrow \grp_{lc}^0$ is open. For such a $\grp_{lc}$
with a left Haar system, the \htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $C_c(\grp_{lc})$ is a
\textit{convolution} \textit{*--algebra}, where for $f, g \in
C_c(\grp_{lc})$:

$$f * g(x) = \int f(t)g(t^{-1} x) d \lambda^{r(x)} (t),$$

with $$f*(x) = \overline{f(x^{-1})}.$$


One has $C^*(\grp_{lc})$ to be the \textit{enveloping C*--algebra}
of $C_c(\grp_{lc})$ (and also representations are required to be
continuous in the inductive limit topology). Equivalently, it is
the completion of $\pi_{univ}(C_c(\grp_{lc}))$ where $\pi_{univ}$
is the \textit{universal representation} of $\grp_{lc}$. For
example, if $ \grp_{lc} = R_n$ , then $C^*(\grp_{lc})$ is just the
finite dimensional algebra $C_c(\grp_{lc}) = M_n$, the span of the
$e_{ij}$ 's.


There exists a \textit{measurable \htmladdnormallink{Hilbert bundle}}{http://planetphysics.us/encyclopedia/HilbertBundle.html} $(\grp_{lc}^0, \H, \mu)$ with $\H  = \left\{ \H^u_{u \in
\grp_{lc}^0} \right\}$ and a G-representation L on $\H$. Then,
for every pair $\xi, \eta$ of \htmladdnormallink{square}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} integrable sections of $\H$,
it is required that the \htmladdnormallink{function}{http://planetphysics.us/encyclopedia/Bijective.html} $x \mapsto (L(x)\xi (s(x)), \eta
(r(x)))$ be $\nu$--measurable. The representation $\Phi$ of
$C_c(\grp_{lc})$ is then given by:\\ $\left\langle \Phi(f) \xi
\vert,\eta \right\rangle = \int f(x)(L(x) \xi (s(x)), \eta (r(x)))
d \nu_0(x)$.


The triple $(\mu, \H, L)$ is called a \textit{measurable
$\grp_{lc}$--Hilbert bundle}.


\begin{thebibliography}{9}

\bibitem{AS}
E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of
Operator Algebras}, Birkh\''auser, Boston--Basel--Berlin (2003).

\bibitem{ICB71}
I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., \emph{Proceed. 4th Intl. Congress LMPS}, (August-Sept. 1971).

\bibitem{ICB8}
I.C. Baianu, N. Boden and D. Lightowlers.1981. NMR Spin--Echo Responses of Dipolar--Coupled Spin--1/2 Triads in Solids., \emph{J. Magnetic Resonance}, \textbf{43}:101--111.

\bibitem{BGB07}
I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., \emph{Axiomathes} \textbf{17},(3-4): 353-408(2007).

\bibitem{BSS}
F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, \emph{Phys. Rev. Lett.} \textbf{89} No. 18 (1--4): 181-201 (2002).

\bibitem{BJW}
J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity.
Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001).
\textit{Intl. J. Modern Phys.} \textbf{A 18} , October, suppl., 97-113 (2003)


\bibitem{Chaician}
M. Chaician and A. Demichev: \emph{Introduction to Quantum Groups}, World Scientific (1996).

\bibitem{Coleman}
Coleman and De Luccia: Gravitational effects on and of vacuum decay., \emph{Phys. Rev. D} \textbf{21}: 3305 (1980).

\bibitem{Connesbook}
A. Connes: \emph{Noncommutative Geometry}, Academic Press 1994.

\bibitem{CF}
L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. \textit{J. Math. Phys}. \textbf{35} (no. 10): 5136-5154 (1994).

\bibitem{DT96}
W. Drechsler and P. A. Tuckey:  On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, \textbf{13}:611--632 (1996).
doi: 10.1088/0264--9381/13/4/004


\bibitem{Drinfeld}
V. G. Drinfel'd: Quantum groups, In \emph{Proc. Int. Cong. of
Mathematicians, Berkeley 1986}, (ed. A. Gleason), Berkeley, 798--820 (1987).

\bibitem{Ellis}
G. J. Ellis: Higher dimensional crossed modules of algebras,
\emph{J. of Pure Appl. Algebra} \textbf{52} (1988), 277--282.

\bibitem{Etingof1}
P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196:  591-640 (1998)

\bibitem{Etingof2}
P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum
groups, \emph{Commun. Math. Phys.} \textbf{205} (1): 19--52 (1999)

\bibitem{Etingof3}
P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in \emph{Quantum Groups and Lie Theory (Durham, 1999)}, pp. 89--129, Cambridge University Press, Cambridge, 2001.

\bibitem{Fauser2002}
B. Fauser: A treatise on quantum Clifford Algebras. Konstanz,
Habilitationsschrift.  $arXiv.math.QA/0202059$ (2002).

\bibitem{Fauser2004}
B. Fauser: Grade Free product Formulae from Grassman--Hopf Gebras.
Ch. 18 in R. Ablamowicz, Ed., \emph{Clifford Algebras: Applications to Mathematics, Physics and Engineering}, Birkh\"{a}user: Boston, Basel and Berlin, (2004).


\bibitem{Fell}
J. M. G. Fell. 1960. ``The Dual Spaces of  C*--Algebras.'', {\em Transactions of the American
Mathematical Society}, \textbf{94}: 365--403 (1960).

\bibitem{FernCastro}
F.M. Fernandez and E. A. Castro.:  \textit{(Lie) Algebraic Methods in Quantum Chemistry and Physics.}, Boca Raton: CRC Press, Inc  (1996).

\bibitem{Feynman}
R. P. Feynman: Space--Time Approach to Non--Relativistic Quantum Mechanics, {\em Reviews
of Modern Physics}, 20: 367-387 (1948). [It is also reprinted in (Schwinger 1958).]


\bibitem{frohlich:nonab}
A.~Fr{\"o}hlich, {\em Non-Abelian Homological Algebra. {I}.
{D}erived functors and satellites.\/}, Proc. London Math. Soc. (3), 11: 239--252 (1961).


\bibitem{GN}
Gel'fand, I. and Naimark, M., 1943, On the Imbedding of Normed Rings into the Ring of
Operators in Hilbert Space, {\em Recueil Math\'ematique [Matematicheskii Sbornik] Nouvelle S\'erie},
\textbf{12} [54]: 197-213. [Reprinted in C*-algebras: 1943--1993, in the series Contemporary
Mathematics, 167,  Providence, R.I. : American Mathematical Society, 1994.]

\bibitem{GR02}
R. Gilmore: \textit{``Lie Groups, Lie Algebras and Some of Their Applications.''},
Dover Publs., Inc.: Mineola and New York, 2005.

\bibitem{Hahn1}
P. Hahn: Haar measure for measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1--33(1978).

\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34--72(1978).

\bibitem{HeynLifsctz}
R. Heynman and S. Lifschitz. 1958. \emph{Lie Groups and Lie Algebras}., New York and London: Nelson Press.

\bibitem{HLS2k8}
C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) $arXiv:0709.4364v2 [quant-ph]$

\end{thebibliography} 

\end{document}