Jump to content

Talk:PlanetPhysics/Lie Algebras

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Lie algebras
%%% Primary Category Code: 00.
%%% Filename: LieAlgebras.tex
%%% Version: 11
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\X}{\mathcal{X}}
\newcommand{\g}{\mathfrak{g}}
\newcommand{\h}{\mathfrak{h}}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsection{Lie algebras in quantum theories}

Continuous symmetries often have a special \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} of underlying continuous \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, called a {\em Lie group}. Briefly, a {\em Lie group} $G$ is generally considered having a (smooth) $C^\infty$ \htmladdnormallink{manifold}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} structure, and acts upon itself smoothly. Such a globally smooth structure is surprisingly simple in two ways: it always admits an Abelian \htmladdnormallink{fundamental group}{http://planetphysics.us/encyclopedia/SingularComplexOfASpace.html}, and seemingly also related to this global property, it admits an associated, unique--as well as finite--Lie algebra that completely specifies locally the properties of the Lie group everywhere.
There is a finite Lie algebra of quantum commutators and their unique (continuous) Lie groups. Thus, Lie algebras can greatly simplify quantum \htmladdnormallink{computations}{http://planetphysics.us/encyclopedia/LQG2.html} and the initial problem of defining the form and symmetry of the quantum \htmladdnormallink{Hamiltonian}{http://planetphysics.us/encyclopedia/Hamiltonian2.html} subject to \htmladdnormallink{boundary}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} and initial conditions in the quantum \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} under consideration. However, unlike most \htmladdnormallink{regular}{http://planetphysics.us/encyclopedia/CoIntersections.html} \htmladdnormallink{abstract algebras}{http://planetphysics.us/encyclopedia/PAdicMeasure.html}, a \htmladdnormallink{Lie Algebra}{http://planetphysics.us/encyclopedia/TopologicalOrder2.html} is not associative, and it is in fact a {\em \htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}}. It is also perhaps this feature that makes the Lie algebras somewhat compatible, or consistent, with \htmladdnormallink{quantum logics}{http://planetphysics.us/encyclopedia/LQG2.html} that are also thought to have non-associative, non-distributive and \htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} lattice structures.


\subsection{General Lie algebra definition and Examples}
\begin{definition}
A {\em Lie algebra} over a \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} $k$ is a vector space $\mathfrak{g}$ together with a bilinear map $[\ ,\ ] : \mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$, called the {\em Lie bracket} and defined by the association $(x,y)\mapsto [x,y]$. The bracket is subject to the following two conditions:
\begin{enumerate}
\item $[x,x] = 0$ for all $x\in\mathfrak{g}$.
\item The {\em Jacobi \htmladdnormallink{identity}{http://planetphysics.us/encyclopedia/Cod.html}}: $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$ for all $x,y,z\in\mathfrak{g}$.
\end{enumerate}
\end{definition}


{\bf Examples:}


Any vector space can be made into a Lie algebra simply by setting $[x,y] = 0$ for all \htmladdnormallink{vectors}{http://planetphysics.us/encyclopedia/Vectors.html} $x,y$. Such a Lie algebra is an {\em Abelian} Lie algebra.

If $G$ is a Lie group, then the tangent space at the identity forms a Lie algebra over the real numbers.

$\mathbb{R}^3$ with the \htmladdnormallink{cross product}{http://planetphysics.us/encyclopedia/VectorProduct.html} \htmladdnormallink{operation}{http://planetphysics.us/encyclopedia/Cod.html} is a \htmladdnormallink{non-Abelian}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} three dimensional (3D) Lie algebra over $\mathbb{R}$.

Consider next the annihilation \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumOperatorConcept.html} $a$ and the creation \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumOperatorConcept.html} $a\dagger$ in \htmladdnormallink{quantum theory}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html}. Then, the Hamiltonian $H$ of a harmonic quantum oscillator, together with the \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} $a$ and $a\dagger$ generate a 4--dimensional (\htmladdnormallink{4D}{http://planetphysics.us/encyclopedia/Curved4DimensionalSpace.html}) Lie algebra with \htmladdnormallink{commutators}{http://planetphysics.us/encyclopedia/Commutator.html}: $[H, a] = −a$, $[H, a\dagger] = a\dagger,$ and $[a, a\dagger] = I$. This Lie algebra is solvable and generates after repeated application of $a\dagger$ all of the eigenvectors of the \htmladdnormallink{quantum harmonic oscillator}{http://planetphysics.us/encyclopedia/LieAlgebraInQuantumTheory.html}.

\end{document}