Talk:PlanetPhysics/Jordan Banach and Jordan Lie Algebras

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Jordan-Banach and Jordan-Lie algebras
%%% Primary Category Code: 00.
%%% Filename: JordanBanachAndJordanLieAlgebras.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb,amscd}
\usepackage{mathrsfs}

% define commands here
\newcommand*{\abs}[1]{\left\lvert #1\right\rvert}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newcommand{\real}{\mathbb{R}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\mpdiff}[3]{\frac{\partial^#1 #2}{\partial #3^#1}}
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}

\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsubsection{Jordan-Banach, Jordan-Lie, and Jordan-Banach-Lie algebras:
Definitions and Relationships to Poisson and C*-algebras}

Firstly, a specific \emph{algebra} consists of a \htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $E$ over a ground \htmladdnormallink{field}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} (typically $\bR$ or $\bC$) equipped with a bilinear and distributive multiplication $\circ$~. Note that $E$ is not necessarily commutative or associative.

A \emph{Jordan algebra} (over $\bR$), is an algebra over $\bR$ for which:

$ \begin{aligned} S \circ T &= T \circ S~, \\ S \circ (T \circ S^2) &= (S \circ T) \circ S^2
\end{aligned}$,

for all elements $S, T$ of the algebra.

It is worthwhile noting now that in the \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} theory of Jordan algebras, an important role is played by the \emph{Jordan triple product} $\{STW\}$ as defined by:

$$ \{STW\} = (S \circ T)\circ W + (T \circ W) \circ S - (S \circ W) \circ T~, $$

which is linear in each factor and for which $\{STW\} = \{WTS\}$~. Certain examples entail
setting $\{STW\} = \frac{1}{2}\{STW + WTS\}$~.


A \emph{Jordan \htmladdnormallink{Lie Algebra}{http://planetphysics.us/encyclopedia/TopologicalOrder2.html}} is a real vector space $\mathfrak A_{\bR}$
together with a \emph{Jordan product} $\circ$ and \emph{Poisson bracket}

$\{~,~\}$, satisfying~:
\begin{itemize}
\item[1.] for all $S, T \in \mathfrak A_{\bR}$,

$\begin{aligned} S \circ T &= T \circ S \\ \{S, T \} &= - \{T,
S\} \end{aligned}$

\item[2.] the \emph{Leibniz rule} holds

$$ \{S, T \circ W \} = \{S, T\} \circ W + T \circ \{S, W\},$$
for all $S, T, W \in \mathfrak A_{\bR}$, along with

\item[3.]

the \emph{Jacobi \htmladdnormallink{identity}{http://planetphysics.us/encyclopedia/Cod.html}}~:

$$ \{S, \{T, W \}\} = \{\{S,T \}, W\} + \{T, \{S, W \}\}$$

\item[4.]

for some $\hslash^2 \in \bR$, there is the \emph{associator identity} ~:
$$(S \circ T) \circ W - S \circ (T \circ W) = \frac{1}{4} \hslash^2 \{\{S, W \}, T \}~.$$

\end{itemize}

\subsubsection{Poisson algebra}

By a \emph{\htmladdnormallink{Poisson algebra}{http://planetphysics.us/encyclopedia/PoissonRing.html}} we mean a Jordan algebra in which $\circ$ is associative. The
usual algebraic \htmladdnormallink{types}{http://planetphysics.us/encyclopedia/Bijective.html} of \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} automorphism, \htmladdnormallink{isomorphism}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html}, etc.) apply to Jordan-Lie (Poisson) algebras (see Landsman, 2003).


Consider the classical configuration space $Q = \bR^3$ of a moving \htmladdnormallink{particle}{http://planetphysics.us/encyclopedia/Particle.html} whose phase space is the cotangent bundle $T^* \bR^3 \cong \bR^6$, and for which the space of (classical) \htmladdnormallink{observables}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} is taken to be the real vector space of smooth \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} $$\mathfrak A^0_{\bR} = C^{\infty}(T^* R^3, \bR)$$~. The usual pointwise multiplication of functions $fg$ defines a \htmladdnormallink{bilinear map}{http://planetphysics.us/encyclopedia/BilinearMap.html} on $\mathfrak A^0_{\bR}$, which is seen to be commutative and associative. Further, the Poisson bracket on functions

$$\{f, g \} := \frac{\del f}{\del p^i} \frac{\del g}{\del q_i} - \frac{\del
f}{\del q_i} \frac{\del g}{\del p^i} ~,$$

which can be easily seen to satisfy the Liebniz rule above. The axioms above then set the stage of passage to quantum mechanical \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} which the \htmladdnormallink{parameter}{http://planetphysics.us/encyclopedia/Parameter.html} $k^2$ suggests.


\subsubsection{C*--algebras (C*--A), JLB and JBW Algebras}

An \emph{involution} on a complex algebra $\mathfrak A$ is a real--linear map $T \mapsto T^*,$ such that for all $S, T \in \mathfrak A$ and
$\lambda \in \bC$, we have also
$$ T^{**} = T~,~ (ST)^* = T^* S^*~,~ (\lambda T)^* = \bar{\lambda} T^*~. $$

A \emph{*--algebra} is said to be a complex associative algebra together with an involution $*$~.


A \emph{C*--algebra} is a simultaneously a *--algebra and a \htmladdnormallink{Banach space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $\mathfrak A$, satisfying for all $S, T \in \mathfrak A$~:
\bigbreak

$ \begin{aligned} \Vert S \circ T \Vert &\leq \Vert S \Vert ~ \Vert T \Vert~, \\ \Vert T^* T
\Vert^2 & = \Vert T\Vert^2 ~. \end{aligned}$

One can easily see that $\Vert A^* \Vert = \Vert A \Vert$~. By the above axioms a C*--algebra is a special case of a Banach algebra where the latter requires the above \htmladdnormallink{norm}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} property but not the involution (*) property. Given Banach spaces $E, F$ the space $\mathcal L(E, F)$ of (bounded) \htmladdnormallink{linear operators}{http://planetphysics.us/encyclopedia/Commutator.html} from $E$ to $F$ forms a Banach space, where for $E=F$, the space $\mathcal L(E) = \mathcal L(E, E)$ is a Banach algebra with respect to the norm
$\Vert T \Vert := \sup\{ \Vert Tu \Vert : u \in E~,~ \Vert u \Vert= 1 \}~. $

In \htmladdnormallink{quantum field theory}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html} one may start with a \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $H$, and consider the Banach algebra of bounded linear operators $\mathcal L(H)$ which given to be closed under the usual algebraic \htmladdnormallink{operations}{http://planetphysics.us/encyclopedia/Cod.html} and taking adjoints, forms a
$*$--algebra of bounded \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html}, where the adjoint operation functions as the involution, and for $T \in \mathcal L(H)$ we have~:


$ \Vert T \Vert := \sup\{ ( Tu , Tu): u \in H~,~ (u,u) = 1 \}~,$ and $ \Vert Tu \Vert^2 = (Tu, %%@
Tu) = (u, T^*Tu) \leq \Vert T^* T \Vert~ \Vert u \Vert^2~.$



By a morphism between C*--algebras $\mathfrak A,\mathfrak B$ we mean a linear map $\phi : \mathfrak A \lra \mathfrak B$, such that for all $S, T \in \mathfrak A$, the following hold~:

$$\phi(ST) = \phi(S) \phi(T)~,~ \phi(T^*) = \phi(T)^*~, $$

where a \htmladdnormallink{bijective}{http://planetphysics.us/encyclopedia/Bijective.html} morphism is said to be an isomorphism (in which case it is then an isometry). A fundamental \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} is that any norm-closed $*$--algebra $\mathcal A$ in $\mathcal L(H)$ is a C*--algebra, and conversely, any C*--algebra is isomorphic to a norm--closed $*$--algebra in $\mathcal L(H)$ for some Hilbert space $H$~.

For a C*--algebra $\mathfrak A$, we say that $T \in \mathfrak A$ is \emph{self--adjoint} if $T = T^*$~. Accordingly, the self--adjoint part $\mathfrak A^{sa}$ of $\mathfrak A$ is a real vector space since we can decompose $T \in \mathfrak A^{sa}$ as ~:

$$ T = T' + T^{''} := \frac{1}{2} (T + T^*) + \iota (\frac{-\iota}{2})(T - T^*)~.$$

A \emph{commutative} C*--algebra is one for which the associative multiplication is commutative. Given a commutative C*--algebra $\mathfrak A$, we have $\mathfrak A \cong C(Y)$, the algebra of continuous functions on a compact Hausdorff space $Y~$.

A \emph{Jordan--Banach algebra} (a JB--algebra for short) is both a real Jordan algebra and a Banach space, where for all $S, T \in \mathfrak A_{\bR}$, we have

$ \begin{aligned} \Vert S \circ T \Vert &\leq \Vert S \Vert ~ \Vert T \Vert ~, \\ \Vert T \Vert^2 &\leq \Vert S^2 + T^2 \Vert ~. \end{aligned}$


A \emph{JLB--algebra} is a JB--algebra $\mathfrak A_{\bR}$ together with a Poisson bracket for which it becomes a Jordan--Lie algebra for some $\hslash^2 \geq 0$~. Such JLB--algebras often constitute the real part of several widely studied complex associative algebras.

For the purpose of \htmladdnormallink{quantization}{http://planetphysics.us/encyclopedia/MoyalDeformation.html}, there are fundamental relations between $\mathfrak A^{sa}$, JLB and Poisson algebras.

Conversely, given a JLB--algebra $\mathfrak A_{\bR}$ with $k^2 \geq 0$, its
complexification $\mathfrak A$ is a $C^*$-algebra under the operations~:

$\begin{aligned} S T &:= S \circ T - \frac{\iota}{2} k \times{\left\{S,T\right\}}_k ~, {(S + \iota T)}^* &:= S-\iota T . \end{aligned}$


For further details see Landsman (2003) (Thm. 1.1.9).

A JB--algebra which is monotone complete and admits a separating set of normal sets is called a \emph{\htmladdnormallink{JBW-algebra}{http://planetphysics.us/encyclopedia/LocallyCompactQuantumGroup.html}}. These appeared in the \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} of von Neumann who developed a (orthomodular) lattice theory of projections on $\mathcal L(H)$ on which to study \htmladdnormallink{quantum logic}{http://planetphysics.us/encyclopedia/LQG2.html}. BW-algebras have the following property: whereas $\mathfrak A^{sa}$ is a J(L)B--algebra, the self adjoint part of a \htmladdnormallink{von Neumann algebra}{http://planetphysics.us/encyclopedia/CoordinateSpace.html} is a JBW--algebra.


A \emph{JC--algebra} is a norm closed real linear subspace of $\mathcal
L(H)^{sa}$ which is closed under the bilinear product $S \circ T = \frac{1}{2}(ST + TS)$ (non--commutative and nonassociative). Since any norm closed Jordan subalgebra of $\mathcal L(H)^{sa}$ is a JB--algebra, it is natural to specify the exact relationship between JB and JC--algebras, at least in finite dimensions. In order to do this, one introduces the `exceptional' algebra $H_3({\mathbb O})$, the algebra of $3 \times 3$ Hermitian matrices with values in the octonians $\mathbb O$~. Then a finite dimensional JB--algebra is a
JC--algebra if and only if it does not contain $H_3({\mathbb O})$ as a (direct) summand \cite{AS}.

The above definitions and constructions follow the approach of Alfsen and Schultz (2003), and also reported earlier by Landsman (1998).

\begin{thebibliography}{9}

\bibitem{AS}
Alfsen, E.M. and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkh\"auser, Boston-Basel-Berlin.(2003).

\end{thebibliography} 

\end{document}