Talk:PlanetPhysics/Ion Pavaloiu
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Ion Pavaloiu
%%% Primary Category Code: 00.
%%% Filename: IonPavaloiu.tex
%%% Version: 16
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your
% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\section{$Biography \, of \, Ion \, P\check{a}v\check{a}loiu$ }
b. 1939 in Romania.
Ph.D. in Mathematics in 1971, specialized in Mathematical Analysis, Functional
Analysis and Numerical Analysis, with applications to physics and medicine.
\subsection{Academic positions}
1998-present Professor at North University of Baia-Mare
1991-present Senior researcher (I) at ``Tiberiu Popoviciu'' Institute of Numerical Analysis (ITCP)
1990-present Director of Tiberiu Popoviciu Institute of Numerical Analysis
1990-1991 Senior researcher (II) at Tiberiu Popoviciu Institute of Numerical Analysis
1970-1990 Senior researcher (III) at Tiberiu Popoviciu Institute of Numerical Analysis
1966-1970 Researcher at Tiberiu Popoviciu Institute of Numerical Analysis
1962-1966 Research assistant at Tiberiu Popoviciu Institute of Numerical Analysis
\subsection{Membership in professional societies}
The Romanian Mathematical Society
\subsection{Grants:}
GAR nr.95/1998 of the Romanian Academy, Theme: "The qualitative study of the perturbations influence on the stability of inexact Newton method" (collaborator).
GAR nr.97/1999 of the Romanian Academy, Theme: "The \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} between the characterizations of the convergence orders of the practical methods for Newton \htmladdnormallink{algorithm}{http://planetphysics.us/encyclopedia/RecursiveFunction.html}".
GAR nr.6100GR/13 oct. 2000 cu ANSTI, Theme: Convergence \htmladdnormallink{theorems}{http://planetphysics.us/encyclopedia/Formula.html} for quasi-Newton and inexact Newton methods (collaborator).
GAR nr.64/2001 of the Romanian Academy, Theme: High order convergence of the successive approximations (collaborator)
Grant nr.7037/2001 of M.E.C., Theme: "Newton methods for the singular case; the linear convergence" (consultant)
GAR nr.45/2002 of the Romanian Academy, Theme: High order convergence of the successive approximations (Co-PI).
GAR nr.19/2003 of the Romanian Academy, Theme: The error control in floating arithmetic for the finite differences of the Newton-Krylov methods" (Co-PI)
GAR nr.16/2004 of the Romanian Academy, Theme: Finite difference Newton-Krylov methods
\subsection{Current research in the following areas:}
\begin{itemize}
\item Inverse interpolation method
\item The methods with optimal convergence order within the class of iteration methods
\item The efficiency of numerical calculus and the iteration methods with optimal efficiency index
\item The monotony of the approximating sequences for the solutions of equations
\item Iterative methods (Newton, Newton-Krylov, Newton-type) for numerical solving of nonlinear \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} of equations in Rn
\item Iterative methods (Newton, Chebyshev, Steffensen, etc) for numerical solving eigenproblems
\item Methods of \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} approximations
\item Iterative methods for solving \htmladdnormallink{nonlinear equations}{http://planetphysics.us/encyclopedia/ErmakovLewisInvariants.html} in \htmladdnormallink{Banach spaces}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}
\item The stability of the numerical methods for solving equations and the error evaluation
\end{itemize}
\subsection{Research activities:}
Deputy chief Editor of the journal ''Revue D'Analyse Num\'erique et de Th\'eorie de L'Approximation''.
Member in the Editorial board of the journal ''Mathematica''
\subsubsection{Research areas:}
\begin{itemize}
\item \htmladdnormallink{mechanics}{http://planetphysics.us/encyclopedia/Mechanics.html} \item \htmladdnormallink{computer}{http://planetphysics.us/encyclopedia/Program3.html} science
\item Numerical methods in medicine
\end{itemize}
\subsection{Selected Publications (from a list of over 100 published papers)}
$I. \, P\check{a}v\check{a}loiu$, La r\'esolution des syst\`emes d'\'equations opp\'erationnelles \`a l'aide des m\'ethodes it\'eratives, Mathematica, 11, (34), (1969), pp.137-141. (M.R. 41 , No. 4787).
$I. \, P\check{a}v\check{a}loiu$, Int\'erpolation dans des \'espaces lin\'eaires norm\'ees et applications, Mathematica, 12 (35), 1 (1970), pp.149-158. (M.R. 45., No. 9031).
$I. \, P\check{a}v\check{a}loiu$, Sur les proced\'ees it\'erative \'a un order \'elev\'e de convergence, Math\'ematica, 12(35) 2 (1970), pp.309-324. (M.R. 40, No. 4245).
$I. \, P\check{a}v\check{a}loiu$, Sur l'approximation des solutions des equations \'a l'aide des suites \'a \'el\'ements dans un espace de Banach, Mathematica, Revue d'analyse num\'erique et de la th\'eorie de l'approximation, Tom 5, 1, (1976), pp.63-67. (M.R. 58 , No. 31821).
$I. \, P\check{a}v\check{a}loiu$, Une g\'en\'eralisation de methode de Newton, Mathematica, 20, (43), 1, (1978), pp.45-52. (M.R. 80d: 65073).
$I. \, P\check{a}v\check{a}loiu$, Une variante de m\'ethode de Newton, Revue d'analyse num\'erique et de la th\'eorie d\'e l'approximation, 7, 1, (1978), PP.95-99. (M.R. 80g: No. 47078).
$I. \, P\check{a}v\check{a}loiu$, Sur l'order de convergence des m\'ethodes d'it\'eration, Mathematica, 23, (46), 1, (1981), pp.261-272). (M.R. 83m: 40002).
$I. \, P\check{a}v\check{a}loiu$, La r\'esolution des equations par int\'erpolation, Math\'ematica, 23, (46), 1, (1981), pp.61-72. (M.R. 83g: 65064b).
$I. \, P\check{a}v\check{a}loiu$, I. Sherb, Sur des m\'ethodes it\'eratives de \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} int\`erpolatoire \'a vit\`esse de convergence optimale, Revue d'analyse num\'erique et de la th\'eorie de l'approximation, 12, 1, (1983), pp.83-88. (M.R. 85h: 65107).
$I. \, P\check{a}v\check{a}loiu$, I. Sherb, Sur des m\'ethodes it\'eratives optimales, Preprint nr.1 (1983), pp.175-182. Seminar on functional analysis and numerical methods. (M.R. 85e: 65029).
C. Iancu, $I. \, P\check{a}v\check{a}loiu$, I. Sherb, M\'ethodes it\'eratives optimales de type Steffensen obtenues par interpolation inv\`erse. Preprint nr.1, (1983). Seminar on functional analysis and numerical methods, pp.81-88.
C. Iancu, $I. \, P\check{a}v\check{a}loiu$, Resolution des equations \`a l'aide des fonctions splines d'interpolation inv\`erse. Preprint nr.1,
C. Iancu, $I. \, P\check{a}v\check{a}loiu$, La resolution des \'equations par interpolation inverse de type Hermite, Mathematica (Cluj), 26 (49) (1984), No 2, pp.115-123 (M.R. 86k: 65037).
C. Iancu, $I. \, P\check{a}v\check{a}loiu$, Resolution des equations \`a l'aide des fonctions rationnelles d'interpolation inv\`erse, Preprint nr.1, (1985), pp.71-78. Seminar on functional analysis and numerical methods. (M.R. 832504).
C. Iancu, T. Oproiu, $I. \, P\check{a}v\check{a}loiu$, Inverse interpolation spline with applications to the equation solving, Preprint nr.1 (1986), pp.67-84. Seminar on functional analysis and numerical methods.
$I. \, P\check{a}v\check{a}loiu$, La convergence de certaines m\'ethodes it\'eratives pour r\'esoudre certaines equations operationnelles, Preprint No.1, (1986), pp.127-132. Seminar on functional analysis and numerical methods.
\end{document}