Talk:PlanetPhysics/Highly Complex Systems
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: highly complex systems
%%% Primary Category Code: 00.
%%% Filename: HighlyComplexSystems.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Highly-complex systems}
\subsubsection{Introduction}
Modeling the emergence of the ultra-complex system of the
human mind--based on the super-complex human organism-- one needs to consider an associated
progression towards \htmladdnormallink{higher dimensional algebras}{http://planetphysics.us/encyclopedia/InfinityGroupoid.html} from the lower dimensions of human neural network \htmladdnormallink{dynamics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html} and the simple algebra of physical dynamics, as shown in the following, essentially \emph{\htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html}} \htmladdnormallink{categorical diagram}{http://planetphysics.us/encyclopedia/CategoricalDiagramsDefinedByFunctors.html}.
One can represent by \htmladdnormallink{square}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} categorical diagrams the emergence of ultra-complex
dynamics from the super-complex dynamics of human organisms coupled {\em via} social interactions
in characteristic patterns represented by Rosetta biogroupoids, together with the complex--albeit inanimate--systems with `chaos' as discussed next.
\subsection{Diagrams of simple and highly-complex systems}
\begin{definition}
An \emph{ultra-complex system, $U_{CS}$} is defined as an \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} in the following \htmladdnormallink{non-commutative diagram}{http://planetphysics.us/encyclopedia/NonCommutativeDynamicModelingDiagrams.html} of \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} and \htmladdnormallink{dynamic system}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} or `dynamic transformations':
$$ \xymatrix@C=5pc{[SUPER-COMPLEX] \ar [r] ^{(\textbf{Higher
Dim})} \ar[d] _{\Lambda}& [[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]] • [[Special:Contributions/MaintenanceBot|contribs]])(U_{CS}= ULTRA-COMPLEX) \ar [d]^{onto}\\ COMPLEX&
\ar [l] ^{(\textbf{Generic Map})}[SIMPLE]} $$
\end{definition}
\subsection{Remarks}
Note that the above \htmladdnormallink{diagram}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is indeed not `natural' (i.e. it is not commutative) for reasons
related to the emergence of the higher dimensions of the super--complex
(biological/organismic) and/or ultra--complex (psychological/neural network dynamic) levels in comparison with
the low dimensions of either simple (physical/classical) or complex (chaotic) dynamic systems.
An \emph{ultra-complex system} represents the human mind and consciousness from the standpoint
of a \htmladdnormallink{categorical ontology}{http://planetphysics.us/encyclopedia/CategoricalOntology.html} theory of levels as the highest level of \htmladdnormallink{complexity}{http://planetphysics.us/encyclopedia/Complexity.html} that
emerged through biological and social coevolution over the last $2.2$ million years on Earth.
\end{document}