Talk:PlanetPhysics/Higher Dimensional Algebra 2

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: 2-category of double groupoids
%%% Primary Category Code: 00.
%%% Filename: 2CategoryOfDoubleGroupoids.tex
%%% Version: 9
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \section{2-Category of Double Groupoids}

This is a topic entry on the 2-category of double groupoids.

\subsection{Introduction}

\begin{definition}
Let us recall that if $X$ is a \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} space, then a \emph{double goupoid} $\D$
is defined by the following \htmladdnormallink{categorical diagram}{http://planetphysics.us/encyclopedia/CategoricalDiagramsDefinedByFunctors.html} of linked \htmladdnormallink{groupoids}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html} and sets:

\begin{equation}
\label{squ} \D := \vcenter{\xymatrix @=3pc {S \ar @<1ex> [r] ^{s^1} \ar @<-1ex> [r]
_{t^1} \ar @<1ex> [d]^{\, t_2} \ar @<-1ex> [d]_{s_2} & H \ar[l]
\ar @<1ex> [d]^{\,t}
\ar @<-1ex> [d]_s \\
V \ar [u] \ar @<1ex> [r] ^s \ar @<-1ex> [r] _t & M \ar [l] \ar[u]}},
\end{equation}

where $M$ is a set of points, $H,V$ are two groupoids (called, respectively, ``horizontal'' and ``vertical'' groupoids)
, and $S$ is a set of \htmladdnormallink{squares with two composition laws, $\bullet$ and $\circ$}{http://planetphysics.us/encyclopedia/ThinSquare.html} (as first defined and represented in ref. \cite{BHKP} by Brown et al.) . A simplified notion of a \htmladdnormallink{thin square}{http://planetphysics.us/encyclopedia/Tree.html} is that of ``a continuous map from the unit square of the real plane into $X$ which factors through a tree'' (\cite{BHKP}).
\end{definition}

\subsection{Homotopy double groupoid and homotopy 2-groupoid}

The \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} \htmladdnormallink{composition laws}{http://planetphysics.us/encyclopedia/Identity2.html}, $\bullet$ and $\circ$, employed above to define a \htmladdnormallink{double groupoid}{http://planetphysics.us/encyclopedia/WeakHomotopy.html} $\D$ allow one also to define $\D$ as a groupoid internal to the \htmladdnormallink{category of groupoids}{http://planetphysics.us/encyclopedia/GroupoidCategory.html}. Thus, in the particular case of a Hausdorff space, $X_H$, a double groupoid called the \emph{\htmladdnormallink{homotopy}{http://planetphysics.us/encyclopedia/ThinEquivalence.html} double groupoid of $X_H$} can be denoted as follows

$$\boldsymbol{\rho}^{\square}_2 (X_H) := \D ,$$

where $\square$ is in this case a \htmladdnormallink{thin square}{http://planetphysics.us/encyclopedia/ThinSquare.html}. Thus, the construction of a homotopy double groupoid is based upon the geometric notion of thin square that extends the notion of thin relative homotopy as discussed in ref. \cite{BHKP}. One notes however a significant distinction between a homotopy \htmladdnormallink{2-groupoid}{http://planetphysics.us/encyclopedia/InfinityGroupoid.html} and homotopy double groupoid construction; thus, the construction of the $2$-cells of the homotopy double groupoid is based upon a suitable cubical approach to the notion of thin $3$-cube, whereas the construction of the 2-cells of the homotopy $2$-groupoid can be interpreted by means of a globular notion of thin $3$-cube. ``The homotopy double groupoid of a space, and the related homotopy $2$-groupoid, are constructed directly from the cubical singular complex and so (they) remain close to geometric intuition in an almost classical way'' (viz. \cite{BHKP}).


\subsection{Defintion of 2-Category of Double Groupoids}

\begin{definition}
The \htmladdnormallink{2-category}{http://planetphysics.us/encyclopedia/2Category.html}, $\G^2$-- whose \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} (or $2$-cells) are the above \htmladdnormallink{diagrams}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $\D$ that define double groupoids, and whose $2$-morphisms are \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $\mathbb{F}$ between double groupoid $\D$ diagrams-- is called the \emph{double groupoid \htmladdnormallink{2-category}{http://planetphysics.us/encyclopedia/2Category2.html}}, or the \emph{2-category of double groupoids}.
\end{definition}

\begin{remark}
$\G^2$ is a relatively simple example of a \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of diagrams, or a 1-supercategory, $\S_1$.
\end{remark}

\begin{thebibliography}{9}

\bibitem{BHKP}
R. Brown, K.A. Hardie, K.H. Kamps and T. Porter.,
\htmladdnormallink{A homotopy double groupoid of a Hausdorff space}{http://www.tac.mta.ca/tac/volumes/10/2/10-02.pdf} ,
{\it Theory and Applications of Categories} \textbf{10},(2002): 71-93.

\bibitem{BS1}
R. Brown and C.B. Spencer: Double groupoids and crossed modules, \emph{Cahiers Top. G\'eom.Diff.},
\textbf{17} (1976), 343--362.

\bibitem{BMos}
R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales--Bangor, Maths Preprint, 1986.

\bibitem{HKK}
K.A. Hardie, K.H. Kamps and R.W. Kieboom., A homotopy 2-groupoid of a Hausdorff
\emph{Applied Categorical Structures}, \textbf{8} (2000): 209-234.

\bibitem{Agl-Br-St2k2}
Al-Agl, F.A., Brown, R. and R. Steiner: 2002, Multiple categories: the equivalence of a globular and cubical approach, \emph{Adv. in Math}, \textbf{170}: 711-118.

\end{thebibliography} 

\end{document}