Talk:PlanetPhysics/Groupoid5

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: groupoid
%%% Primary Category Code: 00.
%%% Filename: Groupoid5.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 \section{Groupoid definitions}

\begin{definition}
A \emph{groupoid} $\grp$ is simply defined as a \htmladdnormallink{small category}{http://planetphysics.us/encyclopedia/Cod.html} with inverses over its set of \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $X = Ob(\grp)$. One often writes $\grp^y_x$ for the set of \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in $\grp$ from $x$ to $y$.
\end{definition}

\begin{definition}
\emph{A topological groupoid} consists of a space $\grp$, a distinguished subspace $\grp^{(0)} = \obg \subset \grp$, called {\it the space of objects} of $\grp$, together with maps
\begin{equation}
r,s~:~ \xymatrix{ \grp \ar@<1ex>[r]^r \ar[r]_s & \grp^{(0)} }
\end{equation}
called the {\it range} and {\it \htmladdnormallink{source maps}{http://planetphysics.us/encyclopedia/SmallCategory.html}} respectively,
together with a law of \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} \begin{equation}
\circ~:~ \grp^{(2)}: = \grp \times_{\grp^{(0)}} \grp = \{
~(\gamma_1, \gamma_2) \in \grp \times \grp ~:~ s(\gamma_1) =
r(\gamma_2)~ \}~ \lra ~\grp~,
\end{equation}
such that the following hold~:~
\begin{enumerate}
\item[(1)]
$s(\gamma_1 \circ \gamma_2) = r(\gamma_2)~,~ r(\gamma_1 \circ
\gamma_2) = r(\gamma_1)$~, for all $(\gamma_1, \gamma_2) \in
\grp^{(2)}$~.

\item[(2)]
$s(x) = r(x) = x$~, for all $x \in \grp^{(0)}$~.

\item[(3)]
$\gamma \circ s(\gamma) = \gamma~,~ r(\gamma) \circ \gamma =
\gamma$~, for all $\gamma \in \grp$~.

\item[(4)]
$(\gamma_1 \circ \gamma_2) \circ \gamma_3 = \gamma_1 \circ
(\gamma_2 \circ \gamma_3)$~.

\item[(5)]
Each $\gamma$ has a two--sided inverse $\gamma^{-1}$ with $\gamma
\gamma^{-1} = r(\gamma)~,~ \gamma^{-1} \gamma = s (\gamma)$~.
Furthermore, only for topological groupoids the inverse map needs be continuous.
It is usual to call $\grp^{(0)} = Ob(\grp)$ {\it the set of objects}
of $\grp$~. For $u \in Ob(\grp)$, the set of arrows $u \lra u$ forms a
\htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $\grp_u$, called the \emph{isotropy group of $\grp$ at $u$}.
\end{enumerate}

\end{definition}

Thus, as it is well kown, a topological groupoid is just a groupoid internal to the \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} spaces and continuous maps. The notion of internal groupoid has proved significant in a number of \htmladdnormallink{fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html}, since groupoids generalise bundles of groups, group actions, and equivalence relations. For a further study of groupoids we refer the reader to Brown (2006).

Several examples of groupoids are:
\begin{itemize}
\item (a) locally compact groups, transformation groups, and any group in general:
\item (b) equivalence relations
\item (c) tangent bundles
\item (d) the \htmladdnormallink{tangent groupoid}{http://planetphysics.us/encyclopedia/MoyalDeformation.html} \item (e) holonomy groupoids for foliations
\item (f) Poisson groupoids
\item (g) \htmladdnormallink{graph}{http://planetphysics.us/encyclopedia/Cod.html} groupoids.
\end{itemize}

As a simple, helpful example of a groupoid, consider (b) above. Thus, let \textit{R} be an \emph{equivalence relation} on a set X. Then \textit{R} is a groupoid under the following \htmladdnormallink{operations}{http://planetphysics.us/encyclopedia/Cod.html}:
$(x, y)(y, z) = (x, z), (x, y)^{-1} = (y, x)$. Here, $\grp^0 = X $, (the diagonal of $X \times X$ ) and $r((x, y)) = x, s((x, y)) = y$.

Therefore, $ R^2$ = $\left\{((x, y), (y, z)) : (x, y), (y, z) \in R \right\} $.
When $R = X \times X $, \textit{R} is called a \textit{trivial} groupoid. A special case of a \htmladdnormallink{trivial groupoid}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is
$R = R_n = \left\{ 1, 2, . . . , n \right\}$ $\times $ $\left\{ 1, 2, . . . , n \right\} $. (So every \textit{i} is equivalent to every \textit{j}). Identify $(i,j) \in R_n$ with the \htmladdnormallink{matrix}{http://planetphysics.us/encyclopedia/Matrix.html} unit $e_{ij}$. Then the groupoid $R_n$ is just \htmladdnormallink{matrix multiplication}{http://planetphysics.us/encyclopedia/Matrix.html} except that we only multiply $e_{ij}, e_{kl}$ when $k = j$, and $(e_{ij} )^{-1} = e_{ji}$. We do not really lose anything by restricting the multiplication, since the pairs $e_{ij}, {e_{kl}}$ excluded from groupoid multiplication just give the 0 product in normal algebra anyway.
For a groupoid $\grp_{lc}$ to be a \htmladdnormallink{locally compact groupoid}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html} means that $\grp_{lc}$ is required to be a (second countable) \htmladdnormallink{locally compact Hausdorff space}{http://planetphysics.us/encyclopedia/LocallyCompactHausdorffSpaces.html}, and the product and also inversion maps are required to be continuous. Each $\grp_{lc}^u$ as well as the unit space $\grp_{lc}^0$ is closed in $\grp_{lc}$. What replaces the left \htmladdnormallink{Haar measure}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html} on $\grp_{lc}$ is a \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} of measures $\lambda^u$ ($u \in \grp_{lc}^0$), where $\lambda^u$ is a positive \htmladdnormallink{regular}{http://planetphysics.us/encyclopedia/CoIntersections.html} Borel measure on $\grp_{lc}^u$ with dense support. In addition, the $\lambda^u~$ 's are required to vary continuously (when integrated against $f \in C_c(\grp_{lc}))$ and to form an invariant family in the sense that for each x, the map $y \mapsto xy$ is a measure preserving \htmladdnormallink{homeomorphism}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} from $\grp_{lc}^s(x)$ onto $\grp_{lc}^r(x)$. Such a system $\left\{ \lambda^u \right\}$ is called a \emph{left \htmladdnormallink{Haar system}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html}} for the locally compact groupoid $\grp_{lc}$.

\end{document}