Talk:PlanetPhysics/General Dynamic Systems
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: general dynamic systems
%%% Primary Category Code: 00.
%%% Filename: GeneralDynamicSystems.tex
%%% Version: 15
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% of TeX increases, you will probably want to edit this, but
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{General dynamic system descriptions as stable space-time structures}
\subsubsection{Introduction: General system description}
A \emph{general system} can be described as a dynamical `whole', or entity capable of maintaining its working conditions; more precise system definitions are as follows.
\begin{definition}
A simple system is in general a \emph{bounded}, but not necessarily closed, entity-- here represented as a \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of stable, interacting components with inputs and outputs from the system's environment, or as a \htmladdnormallink{supercategory}{http://planetphysics.us/encyclopedia/SuperCategory6.html} for a complex system consisting of subsystems, or components, with internal boundaries among such subsystems. In order to define a {\em system} one therefore needs to specify the following data:
\begin{enumerate}
\item components or subsystems;
\item mutual interactions, \htmladdnormallink{relations}{http://planetphysics.us/encyclopedia/Bijective.html} or links;
\item a separation of the selected system by some boundary which distinguishes the system from its environment, without necessarily `closing' the system to material exchange with its environment;
\item the specification of the system's environment;
\item the specification of the system's categorical structure and \htmladdnormallink{dynamics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html} (a supercategory will be required only when either the components or subsystems need be themselves considered as represented by a category , i.e. the system is in fact a \emph{super-system} of (sub)systems, as it is the case of \emph{emergent super-complex systems} or organisms).
\end{enumerate}
\end{definition}
\subsubsection{Remarks}
Point (5) claims that a system should occupy either a macroscopic or a microscopic \htmladdnormallink{space-time}{http://planetphysics.us/encyclopedia/SR.html} region, but a system that comes into birth and dies off extremely rapidly may be considered either a short-lived process, or rather, a `\htmladdnormallink{resonance}{http://planetphysics.us/encyclopedia/QualityFactorOfAResonantCircuit.html}' --an instability rather than a system, although it may have significant effects as in the case of
`virtual \htmladdnormallink{particles',}{http://planetphysics.us/encyclopedia/Particle.html} `virtual photons', etc., as in \htmladdnormallink{quantum electrodynamics}{http://planetphysics.us/encyclopedia/QED.html} and chromodynamics. Note also that there are many other, different mathematical definitions of systems, ranging from (systems of) coupled \htmladdnormallink{differential equations}{http://planetphysics.us/encyclopedia/DifferentialEquations.html} to \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} formulations, \htmladdnormallink{semigroups}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{monoids}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{topological groupoid}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html} dynamic systems and dynamic categories. Clearly, the more useful system definitions include \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} and/or \htmladdnormallink{topological structures}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} rather than simple, discrete structure sets, classes or their categories. The main intuition behind this first understanding of system is well expressed by the following passage: ``The most general and fundamental property of a system is the
\emph{inter-dependence} of parts/components/sub-systems or variables.''
\emph{The inter-dependence relation} consists in the existence of a family of determinate relationships among the parts or variables as contrasted with randomness or extreme variability. In other words, \emph{inter-dependence} is the presence or existence of a certain organizational order in the relationship among the components or subsystems which make up the system. It can be shown that such organizational order must either result in a \emph{stable attractor} or else it should occupy a \emph{stable space-time \htmladdnormallink{domain}{http://planetphysics.us/encyclopedia/Bijective.html}}, which is generally expressed in \emph{closed} systems by the \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of
\emph{\htmladdnormallink{equilibrium}{http://planetphysics.us/encyclopedia/ThermalEquilibrium.html}}.
On the other hand, in non-equilibrium, \htmladdnormallink{open systems}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html}, such as living systems, one cannot have a \htmladdnormallink{static}{http://planetphysics.us/encyclopedia/Statics.html} but only a \emph{dynamic self-maintenance} in a `state-space region' of the open system -- which cannot degenerate to either an equilibrium state or a single attractor space-time region. Thus, non-equilibrium, open systems that are capable of \emph{self-maintenance} will also be \emph{generic, or structurally-stable}: their arbitrary, small perturbation from a homeostatic maintenance regime does \textbf{not} result either in completely chaotic dynamics with a single attractor or the loss of their stability. It may however involve an ordered process of change - a process that follows a \emph{determinate, multi-stable pattern} rather than random variation relative to the starting point.
\subsection{General dynamic system definition}
A formal (but natural) definition of a \emph{general dynamic system}, either simple or complex can also be specified as follows.
\begin{definition}
A \emph{general dynamic system} $S_{GD}$ is a \emph{quintuple}
$([I,O], [\lambda: I \to O], \R_S , [\Delta: \R_S \to \R_S], \grp_B)$, where:
\begin{enumerate}
\item $I$ and $O$ are, respectively, the input and output \htmladdnormallink{manifolds}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} of the system , $S_{GD}$;
\item $\R_S$ is a category with structure determined by the components of $S_{GD}$ as \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and
with the links or relations between such components as \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html};
\item $\Delta: \R_S \to \R_S$ is the `dynamic transition' functor in the \htmladdnormallink{functor category}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $Aut_S$
of system endomorphisms (which is endowed with a \htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} structure only in the case of reversible,
\htmladdnormallink{closed systems}{http://planetphysics.us/encyclopedia/ThermodynamicLaws.html});
\item $\lambda$ is the \htmladdnormallink{output `function}{http://planetphysics.us/encyclopedia/StableAutomaton.html} or map' represented as a manifold \htmladdnormallink{homeomorphism}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html};
\item $\grp_B$ is a topological groupoid specifying the boundary, or boundaries, of $S_{GD}$.
\end{enumerate}
\end{definition}
\textbf{Remark}. We can proceed to define automata and certain simpler quantum systems as particular, or specialized, cases of the above general dynamic system quintuple.
\begin{thebibliography}{99}
\bibitem{Hirsch76}
Hirsch, M.W. 1976. {\em Differential Topology}, Springer-Verlag, New York, NY, 1976.
\bibitem{JGH87}
Jones, A., Gray, A., and Hutton, R., {\em Manifolds and Mechanics.}, Cambridge University Press, Cambridge, UK, 1987.
\bibitem{KoA93}
Kosinski, A.A., {\em Differential Manifolds}, Academic Press, San Diego, CA, 1993.
\bibitem{Kohavi78}
Kohavi, Z.,{\em Switching and Finite Automata Theory.}, 2nd edition, McGraw-Hill, New York, NY, 1978.
\bibitem{L-S86}
Lambek, J., and Scott, P.J., {\em Introduction to Higher Order Categorical.} Logic, Cambridge University Press, Cambridge, UK, 1986.
\bibitem{Lang84}
Lang, S.,{\em Algebra.}, 2nd edition, Addison-Wesley, Menlo Park, CA, 1984.
\bibitem{Lang85}
Lang, S., {\em Differential Manifolds.}, Springer-Verlag, New York, NY, 1985.
\bibitem{Lie80}
Lie, S.,1975. Sophus Lie's 1880 Transformation Group Paper, in {\em Lie Groups : History, Frontiers, and Applications.}, Volume 1, translated by M. Ackerman, comments by R. Hermann, Math Sci Press, Brookline, MA, 1975. Original paper 1880.
\bibitem{Lie84}
Lie, S., 1976. Sophus Lie's 1884 Differential Invariant Paper, in {\em Lie Groups : History, Frontiers, and Applications.}, Volume 3, translated by M. Ackerman, comments by R. Hermann, Math Sci Press, Brookline, MA, 1976. Original paper 1884.
\end{thebibliography}
\end{document}