Talk:PlanetPhysics/Functor Categories
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: functor category
%%% Primary Category Code: 02.
%%% Filename: FunctorCategories.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\begin{definition}
In order to define the \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of {\em functor category}, let us consider for any two \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} $\mathcal{\A}$ and $\mathcal{\A'}$, the class
$$\textbf{M} = [\mathcal{\A},\mathcal{\A'}]$$
of all covariant functors from $\mathcal{\A}$ to $\mathcal{\A'}$. For any two such functors $F, K \in [\mathcal{\A}, \mathcal{\A'}]$, $ F: \mathcal{\A} \rightarrow \mathcal{\A'}$ and $ K: \mathcal{\A} \rightarrow \mathcal{\A'}$,
let us denote the class of all \htmladdnormallink{natural transformations}{http://planetphysics.us/encyclopedia/VariableCategory2.html} from $F$ to $K$ by $[F, K]$. In the particular case when $[F, K]$ is a set one can still define for a \htmladdnormallink{small category}{http://planetphysics.us/encyclopedia/Cod.html} $\mathcal{\A}$, the set $Hom_{\textbf{M}}(F,K)$. Thus, cf. p. 62 in \cite{Mitchell65}, when $\mathcal{\A}$ is a {\em small} category the `class' $[F, K]$ of natural transformations from $F$ to $K$ may be viewed as a subclass of the cartesian product $\prod_{A \in \mathcal{\A}}[F(A), K(A)]$, and because the latter is a {\em set} so is $[F, K]$ as well. Therefore, with the categorical law of \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} of natural transformations of functors, and for $\mathcal{\A}$ being small, $\textbf{M} = [\mathcal{\A},\mathcal{\A'}]$ {\em satisfies the conditions for the definition of a category}, and it is in fact a {\em functor category}.
\end{definition}
\textbf{Remark}: In the general case when $\mathcal{\A}$ is {\em not small}, the proper class $\textbf{M} = [\mathcal{\A}, \mathcal{\A'}]$ may be endowed with the structure of a {\em \htmladdnormallink{supercategory}{http://planetphysics.us/encyclopedia/ETACAxioms.html}} (defined as any formal interpretation of \htmladdnormallink{ETAS}{http://planetphysics.us/encyclopedia/ETACAxioms.html}) with the usual categorical \htmladdnormallink{composition law}{http://planetphysics.us/encyclopedia/Identity2.html} for natural transformations of functors. Similarly, one can construct a {\em meta-category} defined as the {\em supercategory of all functor categories}.
\begin{thebibliography}{99}
\bibitem{Mitchell65}
Mitchell, B.: 1965, \emph{Theory of Categories}, Academic Press: London.
\bibitem{NP1975,ICB71,ICB73,ICB74}
Refs. $[15],[17],[18]$ and $[288]$ in the
Bibliography of Category Theory and Algebraic Topology.
Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic-Topological Quantum Computations., \emph{Proceed. 4th Intl. Congress LMPS}, P. Suppes, Editor (August-Sept. 1971).
\end{thebibliography}
\end{document}