Talk:PlanetPhysics/Fermion

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: fermion
%%% Primary Category Code: 05.30.Fk
%%% Filename: Fermion.tex
%%% Version: 9
%%% Owner: vip6
%%% Author(s): vip6, metalac
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 \begin{definition}

\emph{Fermions} are \htmladdnormallink{particles}{http://planetphysics.us/encyclopedia/Particle.html} with a half-integer \htmladdnormallink{spin}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} value, and they are named after the famous Italian--American, Nobel Laureate physicist Enrico Fermi who built the first known operational \htmladdnormallink{nuclear reactor}{http://planetphysics.us/encyclopedia/Cyclotron.html} in Chicago as part of the Manhattan project during WWII. Several particles like \htmladdnormallink{leptons}{http://planetphysics.us/encyclopedia/Lepton.html}, \htmladdnormallink{quarks}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html} and \htmladdnormallink{baryons}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} are all fermions.
\end{definition}

Since fermions have half-integer spin they obey a certain \htmladdnormallink{type}{http://planetphysics.us/encyclopedia/Bijective.html} of quantum-mechanical statistics called the {\em \htmladdnormallink{Fermi-Dirac statistics}{http://planetphysics.us/encyclopedia/FermiDiracDistribution.html}}, which also includes the consequences of the \htmladdnormallink{Pauli `exclusion principle';}{http://planetphysics.us/encyclopedia/PauliExclusionPrinciple.html} the latter principle states that no two fermions can occupy the same quantum mechanical state of a quantum mechanical \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html}. The exclusion principle is the main reason that fermions are the building blocks of the existing physical world, and for the stability of the \htmladdnormallink{electron orbitals}{http://planetphysics.us/encyclopedia/MolecularOrbitals.html} in atoms and \htmladdnormallink{molecules}{http://planetphysics.us/encyclopedia/Molecule.html}.

All known `elementary particles': quarks, electrons, protons, etc are fermions with a spin value of 1/2-- and this suggests that the spin 1/2 elementary particle state is a unique, fundamental state of all stable matter in our \htmladdnormallink{physical Universe}{http://planetphysics.us/encyclopedia/MultiVerses.html}.

(One notes however that in superconducting systems that are usually macroscopically coherent quantum systems, the formation of phase-correlated `\htmladdnormallink{Cooper pairs}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html}' of electrons coupled to the ionic lattice of the superconducting metal does apparently run counter to the Pauli exclusion principle; furthermore, the transition to \htmladdnormallink{superconductivity}{http://planetphysics.us/encyclopedia/WavePhenomena.html} involves necessarily a \htmladdnormallink{spontaneous symmetry breaking}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} that gives rise to \htmladdnormallink{Goldstone bosons}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} without which the superconductivity phenomenon/superconductivity phase transition would not be possible. Thus, in superconducting materials the electron pairs follow the \htmladdnormallink{Bose-Einstein statistics}{http://planetphysics.us/encyclopedia/BoseEinsteinStatistics.html} of very low-temperature condensates and behave like coupled \htmladdnormallink{boson}{http://planetphysics.us/encyclopedia/BoseEinsteinStatistics.html} chains, instead of the \htmladdnormallink{Fermi statistics}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html} of uncorrelated electrons which is most common to high \htmladdnormallink{temperature}{http://planetphysics.us/encyclopedia/BoltzmannConstant.html} electrons; then, all such superconducting electron pairs are able to occupy the ground state with the lowest possible \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} in certain superconducting materials for temperatures below approximately 110 degree K.)

Fermions at high temperatures act on each other by exchanging \htmladdnormallink{field carrier}{http://planetphysics.us/encyclopedia/BoseEinsteinStatistics.html} bosons, just as, for example, in the case of quarks (that are fermions) and \htmladdnormallink{gluons}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html} (that are bosons) inside a \htmladdnormallink{nucleon}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html}, such as a proton or a \htmladdnormallink{neutron}{http://planetphysics.us/encyclopedia/Pions.html} of an atomic nucleus.

\end{document}