Talk:PlanetPhysics/Double Groupoid Geometry
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: double groupoid geometry
%%% Primary Category Code: 00.
%%% Filename: DoubleGroupoidGeometry.tex
%%% Version: 4
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Double Groupoids}
The geometry of \htmladdnormallink{squares}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} and their \htmladdnormallink{compositions}{http://planetphysics.us/encyclopedia/Cod.html} leads to a common \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of a \emph{\htmladdnormallink{double groupoid}{http://planetphysics.us/encyclopedia/ThinEquivalence.html}} in the following form:
\begin{equation}
\label{squ} \D= \vcenter{\xymatrix @=3pc {S \ar @<1ex> [r] ^{s^1} \ar @<-1ex> [r]
_{t^1} \ar @<1ex> [d]^{\, t_2} \ar @<-1ex> [d]_{s_2} & H \ar[l]
\ar @<1ex> [d]^{\,t}
\ar @<-1ex> [d]_s \\
V \ar [u] \ar @<1ex> [r] ^s \ar @<-1ex> [r] _t & M \ar [l] \ar[u]
}}
\end{equation}
where $M$ is a set of `points', $H,V$ are
`horizontal' and `vertical' \htmladdnormallink{groupoids}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html}, and $S$ is a set of
`squares' with two compositions. The laws for a double groupoid
make it also describable as a groupoid internal to the \htmladdnormallink{category of groupoids}{http://planetphysics.us/encyclopedia/GroupoidCategory.html}.
Given two groupoids $H,V$ over
a set $M$, there is a double groupoid $\Box(H,V)$ with $H,V$ as
horizontal and vertical edge groupoids, and squares given by
quadruples
\begin{equation}
\begin{pmatrix} & h& \\[-0.9ex] v & & v'\\[-0.9ex]& h'&
\end{pmatrix}
\end{equation}
for which we assume always that $h,h' \in H, \, v,v' \in V$ and
that the initial and final points of these edges match in $M$ as
suggested by the notation, that is for example $sh=sv, th=sv',
\ldots$, etc. The compositions are to be inherited from those of
$H,V$,
that is
\begin{equation}
\quadr{h}{v}{v'}{h'} \circ_1\quadr{h'}{w}{w'}{h''}
=\quadr{h}{vw}{v'w'}{h''}, \;\quadr{h}{v}{v'}{h'}
\circ_2\quadr{k}{v'}{v''}{k'}=\quadr{hk}{v}{v''}{h'k'} ~.
\end{equation}
This construction is right adjoint to the forgetful \htmladdnormallink{functor}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} which
takes the double groupoid as above, to the pair of groupoids $H,V$
over $M$. Now given a general double groupoid as above, we can
define $S\quadr{h}{v}{v'}{h'}$ to be the set of squares with these
as horizontal and vertical edges.
This allows us to construct for at least a \htmladdnormallink{commutative C*--algebra}{http://planetphysics.us/encyclopedia/OrthomodularLatticeTheory.html} $A$ a \htmladdnormallink{double algebroid}{http://planetphysics.us/encyclopedia/GeneralizedSuperalgebras.html} (i.e. a set with two \htmladdnormallink{algebroid}{http://planetphysics.us/encyclopedia/Algebroids.html} structures)
\begin{equation}
\label{Rsqu} A\D= \vcenter{\xymatrix @=3pc {AS \ar @<1ex> [r] ^{s^1} \ar @<-1ex> [r]
_{t^1} \ar @<1ex> [d]^{\, t_2} \ar @<-1ex> [d]_{s_2} & AH \ar[l]
\ar @<1ex> [d]^{\,t}
\ar @<-1ex> [d]_s \\
AV \ar [u] \ar @<1ex> [r] ^s \ar @<-1ex> [r] _t & M \ar [l]
\ar[u] }}
\end{equation}
for which
\begin{equation}
AS\quadr{h}{v}{v'}{h'}
\end{equation}
is the free $A$-module on the set of squares with the given
\htmladdnormallink{boundary}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html}. The two compositions are then bilinear in the obvious
sense. Alternatively, we can use the \htmladdnormallink{convolution}{http://planetphysics.us/encyclopedia/AssociatedGroupoidAlgebraRepresentations.html} construction
$\bar{A}\D$ induced by the convolution C*--algebra over $H$ and
$V$. These ideas about algebroids need further development in the light of the
algebra of \htmladdnormallink{crossed modules}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html} of algebroids, developed in (Mosa,
1986, Brown and Mosa, 1986) as well as crossed cubes of (C*)
algebras following Ellis (1988).
\end{document}