Talk:PlanetPhysics/Double Category
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: double category
%%% Primary Category Code: 00.
%%% Filename: DoubleCategory.tex
%%% Version: 41
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Background}
Charles Ehresmann defined in 1963 a {\em double category} $\mathcal{D}$ as an internal \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} in the category of \htmladdnormallink{small categories}{http://planetphysics.us/encyclopedia/Cod.html} $\bf{Cat}$.
\subsection{Double category definition}
\begin{definition}
A double category $\mathcal{D}$ consists of:
\begin{itemize}
\item a set of \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html},
\item a set of horizontal \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} $$f: A \to B,$$
\item a set of vertical morphisms $$j: A \to C,$$ and
\item a class of \htmladdnormallink{squares}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} with source and target as shown in the following \htmladdnormallink{diagrams}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}: $$\begin{xy}
*!C\xybox{
\xymatrix{
{A}\ar[r]^{f}\ar[d]_{k}&{B}\ar[d]^{g}\\
{C}\ar[r]_{h}&{D}
} }\end{xy}$$
\end{itemize}
with \htmladdnormallink{compositions}{http://planetphysics.us/encyclopedia/Cod.html} and units of the double category that satisfy the following axioms:
\begin{itemize}
\item \emph{i.} Horizontal:
\[
A\buildrel f_1 \over \longrightarrow
B \buildrel f_2 \over \longrightarrow
C = [f_1, f_2]= f_2 \circ f_1
\]
\[
A\buildrel 1^h_A \over \longrightarrow
A \buildrel f_1 \over \longrightarrow
B = A\buildrel f_1 \over \longrightarrow
B = A \buildrel f_1 \over \longrightarrow
B \buildrel 1^h_B \over \longrightarrow
B
\]
\item \emph{ii.} Vertical:
\[
[A\buildrel j_1 \over \longrightarrow
B \buildrel j_2 \over \longrightarrow
C]_{vert} = [j_1, j_2]_{vert.}= j_2 \circ j_1
\]
\[
[A\buildrel 1^v_A \over \longrightarrow
A \buildrel j_1 \over \longrightarrow
B = A\buildrel j_1 \over \longrightarrow
B = A \buildrel j_1 \over \longrightarrow
B \buildrel 1^v_B \over \longrightarrow
B]_{vert.}
\]
\emph{Compositions for \htmladdnormallink{square diagrams}{http://planetphysics.us/encyclopedia/Commutativity.html} in a double category $\mathcal{D}$:}
\item \emph{iii.} Horizontal composition:
$$\xymatrix{
{A}\ar[r]^{f_1}\ar[d]_{j}&{B}\ar[d]^{k}\\
{D}\ar[r]_{g_1}&{E}}[[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]] • [[Special:Contributions/MaintenanceBot|contribs]]) 20:49, 25 June 2015 (UTC)[\alpha]``\circ'' \xymatrix{
{B}\ar[r]^{f_2}\ar[d]_{k}&{C}\ar[d]^{l}\\
{E}\ar[r]_{g_2}&{F}}[[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]] • [[Special:Contributions/MaintenanceBot|contribs]]) 20:49, 25 June 2015 (UTC)[\beta] = \xymatrix{
{A}\ar[r]^{[f_1f_2]}\ar[d]_{j}&{C}\ar[d]^{l}\\
{D}\ar[r]_{g_1g_2}&{F}} [[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]] • [[Special:Contributions/MaintenanceBot|contribs]]) 20:49, 25 June 2015 (UTC)[\alpha \beta].$$
\item \emph{iv.} Vertical composition of squares in $\mathcal{D}$:
${[\alpha \beta]}_{vert.}$ is expressed as
$$\xymatrix{
{A}\ar[r]^{f}\ar[d]_{[j_1 j_2]_v}&{B}\ar[d]^{[k_1 k_2]_v}\\
{E}\ar[r]_{h}&{F}}[[User:MaintenanceBot|MaintenanceBot]] ([[User talk:MaintenanceBot|discuss]] • [[Special:Contributions/MaintenanceBot|contribs]]) 20:49, 25 June 2015 (UTC)[\alpha \beta]_v.$$
\end{itemize}
\end{definition}
Moreover, all compositions are associative and unital, and also subject to the Interchange Law:
$$\xymatrix{
{[\alpha]}\ar[r]^{--}\ar[d]_{|}&{[\beta]}\ar[d]^{|}\\
{[\gamma]}\ar[r]_{--}&{[\delta]}
} =
{[ [\alpha \beta] ~~over~~ [\gamma \delta]]}_{vert.} = [\alpha \gamma]_v \circ [\beta \delta]_v.$$
Unit morphisms are also subject to the axioms of the double category. For further details on double categories and examples please see the related \htmladdnormallink{free download PDF file}{http://www.math.uchicago.edu/~fiore/1/fiorefolding.pdf}.
\end{document}