Jump to content

Talk:PlanetPhysics/Direction Cosines

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: direction cosines %%% Primary Category Code: 45.40.-f %%% Filename: DirectionCosines.tex %%% Version: 13 %%% Owner: bloftin %%% Author(s): bloftin %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}

\usepackage{html}

\usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts}

% used for TeXing text within eps files %\usepackage{psfrag} % need this for including graphics (\includegraphics) \usepackage{graphicx} % for neatly defining theorems and propositions %\usepackage{amsthm} % making logically defined graphics %\usepackage{xypic}

% there are many more packages, add them here as you need them

% define commands here \newcommand{\md}{d} \newcommand{\mv}[1]{\mathbf{#1}} % matrix or vector \newcommand{\mvt}[1]{\mv{#1}^{\mathrm{T}}} \newcommand{\mvi}[1]{\mv{#1}^{-1}} \newcommand{\mderiv}[1]{\frac{\md}{\md {#1}}} %d/dx \newcommand{\mnthderiv}[2]{\frac{\md^{#2}}{\md {#1}^{#2}}} %d^n/dx \newcommand{\mpderiv}[1]{\frac{\partial}{\partial {#1}}} %partial d^n/dx \newcommand{\mnthpderiv}[2]{\frac{\partial^{#2}}{\partial {#1}^{#2}}} %partial d^n/dx \newcommand{\borel}{\mathfrak{B}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\rationals}{\mathbb{Q}} \newcommand{\reals}{\mathbb{R}} \newcommand{\complexes}{\mathbb{C}} \newcommand{\naturals}{\mathbb{N}} \newcommand{\defined}{:=} \newcommand{\var}{\mathrm{var}} \newcommand{\cov}{\mathrm{cov}} \newcommand{\corr}{\mathrm{corr}} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\powerset}[1]{\mathcal{P}(#1)} \newcommand{\bra}[1]{\langle#1 \vert} \newcommand{\ket}[1]{\vert \hspace{1pt}#1\rangle} \newcommand{\braket}[2]{\langle #1 \ket{#2}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\norm}[1]{\left|\left|#1\right|\right|} \newcommand{\esssup}{\mathrm{ess\ sup}} \newcommand{\Lspace}[1]{L^{#1}} \newcommand{\Lone}{\Lspace{1}} \newcommand{\Ltwo}{\Lspace{2}} \newcommand{\Lp}{\Lspace{p}} \newcommand{\Lq}{\Lspace{q}} \newcommand{\Linf}{\Lspace{\infty}}

% character creep scotch tape fix ...........................

\begin{document}

The Direction Cosines define the orientation of a \htmladdnormallink{vector}{http://planetphysics.us/encyclopedia/Vectors.html} with respect to a coordinate \htmladdnormallink{reference frame}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html}. Each direction cosine is the cosine of the angle between the vector and its corresponding coordinate axis. Let us first look at a two dimensional example in figure 1:

\newline \begin{figure}[!hhp] \begin{center} \caption{2D - Direction Cosines} \includegraphics[width=\textwidth]{figure1.eps} \end{center} \end{figure}

The direction cosines of $\vec {v}$ are \begin{equation} d_1 = \cos(\theta) \end{equation} \begin{equation} d_2 = \cos(\phi) \end{equation}

The x coordinate is given from simple trigonometry by \begin{equation} x = v \cos(\theta) \end{equation}

where v is the \htmladdnormallink{magnitude}{http://planetphysics.us/encyclopedia/AbsoluteMagnitude.html} of the vector $ \vec v $ . Similarily, the y coordinate is given by

\begin{equation} y = v \sin(\theta) \end{equation}

but we can convert this to a cosine through the trigonometric \htmladdnormallink{identity}{http://planetphysics.us/encyclopedia/Cod.html} that \begin{equation} cos( 90 - \theta ) = \sin( \theta ) \end{equation} From figure 1 we see that \begin{equation} \phi = 90^o - \theta \end{equation} which can be subsitituded into 3 to get \begin{equation} y = v \cos(\phi) \end{equation} Note that $\phi$ is the angle between the y-axis and $\vec v$, so our vector $\vec v$ can be represented in this 2D coordinate frame by \begin{equation} \vec v = {v \cos(\theta) } \hat{x} + {v \cos(\phi) } \hat{y} \end{equation} Extending this \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} to three dimensions is quite easy, from figure 2 we can define $\vec v$ with respect t $\hat{x}, \hat{y}, \hat{z}$ coordinate frame by \begin{equation} \vec v = {v \cos(\alpha)} \hat{x} + {v \cos(\beta)} \hat{y} + {v \cos(\gamma)} \hat{z} \end{equation} in a more compact form with \begin{equation} v_1 = v \cos(\alpha) \end{equation} \begin{equation} v_2 = v \cos(\beta) \end{equation} \begin{equation} v_3 = v \cos(\gamma) \end{equation} we get the \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} \begin{equation} \vec v = {\vec v_1} \hat{x} + {\vec v_2} \hat{y} + {\vec v_3} \hat{z} \end{equation}


The directional cosines for figure 2 are \begin{equation} d_1 = \cos(\alpha) \end{equation} \begin{equation} d_2 = \cos(\beta) \end{equation} \begin{equation} d_3 = \cos(\gamma) \end{equation}

An important property of the direction cosines is that \begin{equation} {\alpha}^2 + {\beta}^2 + {\gamma}^2 = 1 \end{equation}

One important application is to use the direction cosines to define a coordinate \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} with reference to another. This can be accompished by defining the location of each coordinate axis \htmladdnormallink{unit vector}{http://planetphysics.us/encyclopedia/PureState.html} with respect to the 'parent'. Once these nine direction cosines are determined (3 for each unit vector), than a transformation \htmladdnormallink{matrix}{http://planetphysics.us/encyclopedia/Matrix.html} exists to carry out coordinate transformations between the child frame and the parent frame.

\end{document}