Jump to content

Talk:PlanetPhysics/Cylindrical Coordinate Motion Example of Generalized Coordinates

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: cylindrical coordinate motion example of generalized coordinates %%% Primary Category Code: 45.20.Jj %%% Filename: CylindricalCoordinateMotionExampleOfGeneralizedCoordinates.tex %%% Version: 2 %%% Owner: bloftin %%% Author(s): bloftin %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}


% this is the default PlanetMath preamble. as your knowledge % of TeX increases, you will probably want to edit this, but % it should be fine as is for beginners.

% almost certainly you want these \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts}

% used for TeXing text within eps files %\usepackage{psfrag} % need this for including graphics (\includegraphics) %\usepackage{graphicx} % for neatly defining theorems and propositions %\usepackage{amsthm} % making logically defined graphics %\usepackage{xypic}

% there are many more packages, add them here as you need them

% define commands here

\begin{document}

As an example let us get the equations in cylindrical coordinates

$$ x=r\cos\phi, \,\,\,\,\,\, y=r\sin\phi, \,\,\,\,\,\, z=z, $$

$$ T=\frac{m}{2} \left[\dot{r}^{2}+r^2\dot{\phi}^{2}+\dot{z}^{2} \right]. $$

$$ \frac{\partial T}{\dot{r}}=m\dot{r}, $$

$$ \frac{T}{\partial r}=m r\dot{\phi}^{2}, $$

$$ \frac{\partial T}{\partial\dot{\phi}}=mr^{2}\dot{\phi}, $$ $$ \frac{\partial T}{\partial \dot{z}}=m\dot{z}. $$

$$ \delta_{r}W=m \left[\ddot{r} - r\dot{\phi}^{2} \right] \delta r=R\delta r, $$

$$ \delta_{\phi}W=m\frac{d}{dt} \left(r^{2}\dot{\phi}\right)\delta\phi=\Phi r\delta\phi, $$

$$ \delta_z W= m \ddot{z} \delta z = Z \delta z; $$

or

$$m \left[ \frac{d^{2}r}{dt^{2}}-r \left(\frac{d\phi}{dt}\right)^{2}\right]=R,$$

$$ \frac{m}{r}\frac{d}{dt}\left(r^{2}\frac{d\phi}{dt}\right)=\Phi, $$ $$ m\frac{d^{2}z}{dt^{2}}=Z. $$

\end{document}