Talk:PlanetPhysics/Cstar Algebra

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: C*-algebra
%%% Primary Category Code: 03.
%%% Filename: CstarAlgebra.tex
%%% Version: 14
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.

% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 \subsection{C*- and von Neumann algebras: Quantum operator algebra in quantum theories}

\subsubsection{Introduction}

C*-algebra has evolved as a key \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} in Quantum Operator Algebra after the introduction of the von Neumann algebra for the mathematical foundation of \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html}. The von Neumann algebra \htmladdnormallink{classification}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} is simpler and studied in greater depth than that of general C*-algebra classification theory.

The importance of C*-algebras for understanding the geometry of \htmladdnormallink{quantum state spaces}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} (Alfsen and Schultz, 2003 \cite{AS}) cannot be overestimated. The theory of C*-algebras has numerous applications in the theory of \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of \htmladdnormallink{groups}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and symmetric algebras, the theory of \htmladdnormallink{dynamical systems}{http://planetphysics.us/encyclopedia/ContinuousGroupoidHomomorphism.html}, statistical physics and \htmladdnormallink{quantum field theory}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html}, and also in the theory of \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} on a \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html}.

Moreover, the introduction of \htmladdnormallink{non-commutative}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} C*-algebras in \htmladdnormallink{noncommutative geometry}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} has already played important roles in expanding the Hilbert space perspective of Quantum Mechanics developed by von Neumann. Furthermore, \htmladdnormallink{extended quantum symmetries}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html} are currently being approached in terms of groupoid C*- \htmladdnormallink{convolution}{http://planetphysics.us/encyclopedia/AssociatedGroupoidAlgebraRepresentations.html} algebra and their representations; the latter also enter into the construction of \htmladdnormallink{compact quantum groupoids}{http://planetphysics.us/encyclopedia/QuantumCompactGroupoids.html} as developed in the Bibliography cited, and also briefly outlined here in the second \htmladdnormallink{section}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html}.
The fundamental connections that exist between \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} of $C^*$-algebras and those of von Neumann and other \htmladdnormallink{quantum operator algebras}{http://planetphysics.us/encyclopedia/Groupoid.html}, such as JB- or JBL- algebras are yet to be completed and are the subject of in depth studies \cite{AS}.

\subsection{Basic definitions}
A \textbf{C*-algebra} is simultaneously a $*$--algebra and a \htmladdnormallink{Banach space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} -with additional conditions- as defined next.

Let us consider first the definition of an \emph{involution} on a complex algebra $\mathfrak A$.

\begin{definition}
An \emph{involution} on a complex algebra $\mathfrak A$ is a \emph{real--linear map} $T \mapsto T^*$
such that for all

$S, T \in \mathfrak A$ and $\lambda \in \bC$, we have $ T^{**} = T~,~ (ST)^* = T^* S^*~,~ (\lambda T)^* = \bar{\lambda} T^*~. $
\end{definition}


A \emph{*-algebra} is said to be a \htmladdnormallink{complex associative algebra}{http://planetphysics.us/encyclopedia/OrthomodularLatticeTheory.html} together with an \htmladdnormallink{operation}{http://planetphysics.us/encyclopedia/Cod.html} of involution $*$~.

\subsection{C*-algebra}
\begin{definition}
A \emph{C*-algebra} is simultaneously a *-algebra and a Banach space $\mathfrak A$,
satisfying for all $S, T \in \mathfrak A$~ the following conditions:


$ \begin{aligned} \Vert S \circ T \Vert &\leq \Vert S \Vert ~ \Vert T \Vert~, \\ \Vert T^* T \Vert^2 & = \Vert T\Vert^2 ~. \end{aligned}$

\end{definition}


One can easily verify that $\Vert A^* \Vert = \Vert A \Vert$~.



By the above axioms a C*--algebra is a special case of a Banach algebra where the latter requires the above C*-norm property, but not the involution (*) property.

Given Banach spaces $E, F$ the space $\mathcal L(E, F)$ of (bounded) \htmladdnormallink{linear operators}{http://planetphysics.us/encyclopedia/Commutator.html} from $E$ to $F$ forms a Banach space, where for $E=F$, the space $\mathcal L(E) = \mathcal L(E, E)$ is a Banach algebra with respect to the \htmladdnormallink{norm}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} \bigbreak
$\Vert T \Vert := \sup\{ \Vert Tu \Vert : u \in E~,~ \Vert u \Vert= 1 \}~. $
\bigbreak
In quantum field theory one may start with a Hilbert space $H$, and consider the Banach
algebra of bounded linear operators $\mathcal L(H)$ which given to be closed under the usual
\htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} operations and taking adjoints, forms a $*$--algebra of bounded operators, where the
adjoint operation \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} as the involution, and for $T \in \mathcal L(H)$ we have~:



$ \Vert T \Vert := \sup\{ ( Tu , Tu): u \in H~,~ (u,u) = 1 \}~,$ and $ \Vert Tu \Vert^2 = (Tu,
Tu) = (u, T^*Tu) \leq \Vert T^* T \Vert~ \Vert u \Vert^2~.$



By a \emph{\htmladdnormallink{morphism}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} between C*-algebras} $\mathfrak A,\mathfrak B$ we mean a linear map $\phi :
\mathfrak A \lra \mathfrak B$, such that for all $S, T \in \mathfrak A$, the following hold~:
\bigbreak
$\phi(ST) = \phi(S) \phi(T)~,~ \phi(T^*) = \phi(T)^*~, $
\bigbreak
where a \htmladdnormallink{bijective}{http://planetphysics.us/encyclopedia/Bijective.html} morphism is said to be an \htmladdnormallink{isomorphism}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} (in which case it is then an
isometry). A fundamental \htmladdnormallink{relation}{http://planetphysics.us/encyclopedia/Bijective.html} is that any norm-closed $*$-algebra $\mathcal A$ in
$\mathcal L(H)$ is a C*-algebra, and conversely, any C*-algebra is isomorphic to a norm--closed $*$-algebra in $\mathcal L(H)$ for some Hilbert space $H$~.
One can thus also define \emph{the category $\mathcal{C}^*$ of C*-algebras and morphisms between C*-algebras}.

For a C*-algebra $\mathfrak A$, we say that $T \in \mathfrak A$ is \emph{self--adjoint} if $T
= T^*$~. Accordingly, the self--adjoint part $\mathfrak A^{sa}$ of $\mathfrak A$ is a real
\htmladdnormallink{vector space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} since we can decompose $T \in \mathfrak A^{sa}$ as ~:


$ T = T' + T^{''} := \frac{1}{2} (T + T^*) + \iota (\frac{-\iota}{2})(T - T^*)~.$


A \emph{commutative} C*--algebra is one for which the associative multiplication is
commutative. Given a \htmladdnormallink{commutative C*--algebra}{http://planetphysics.us/encyclopedia/OrthomodularLatticeTheory.html} $\mathfrak A$, we have $\mathfrak A \cong C(Y)$,
the algebra of continuous functions on a compact Hausdorff space $Y~$.

The classification of {$C^*$-algebras} is far more complex than that of von Neumann algebras that provide
the fundamental algebraic content of quantum state and \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} spaces in quantum theories.


\begin{thebibliography}{99}

\bibitem{AS}
E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of Operator Algebras}, Birkh\"auser, Boston--Basel--Berlin (2003).

\bibitem{ICB71}
I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., \textit{Proceed. 4th Intl. Congress LMPS}, (August-Sept. 1971).

\bibitem{}
I.M. Gel'fand,   M.A. [M.A. Naimark] Neumark,   ``On the imbedding of normed rings in the rings of operators in Hilbert space''  Mat. Sb. , 12 (54) : 2  (1943)  pp. 197--213

\bibitem{}  M.A. Naimark,  ``Normed rings'' , Reidel  (1984)  (Translated from Russian)

\bibitem{JD77}  J. Dixmier,  `` $C^*$-algebras'' , North-Holland  (1977)  (Translated from French)

\bibitem{Sakai71} S. Sakai,   ``$C^*$-algebras and $W^*$ -algebras'' , Springer  (1971)

\bibitem{DR74}  D. Ruelle,   ``Statistical mechanics: rigorous results.'' , Benjamin  (1974) '

\bibitem{RGD72}
R.G. Douglas,  ``Banach algebra techniques in operator theory'' , Acad. Press  (1972)

\bibitem{BGB07}
I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., \emph{Axiomathes} \textbf{17},(3-4): 353-408(2007).
\bibitem{BRM2k3}
M. R. Buneci.: \emph{Groupoid Representations}, Ed. Mirton: Timishoara (2003).
\bibitem{Chaician}
M. Chaician and A. Demichev: \emph{Introduction to Quantum Groups}, World Scientific (1996).
\bibitem{DT96}
W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., \emph{Classical and Quantum Gravity}, \textbf{13}:611-632 (1996). doi: 10.1088/0264--9381/13/4/004
\bibitem{Drinfeld}
V. G. Drinfel'd: Quantum groups, In \emph{Proc. Intl. Congress of Mathematicians, Berkeley 1986}, (ed. A. Gleason), Berkeley, 798-820 (1987).
\bibitem{Ellis}
G. J. Ellis: Higher dimensional crossed modules of algebras,
\emph{J. of Pure Appl. Algebra} \textbf{52} (1988), 277-282.
\bibitem{Etingof1}
P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, \emph{Comm.Math.Phys.}, \textbf{196}: 591-640 (1998).
\bibitem{Etingof2}
P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, \emph{Commun. Math. Phys.} \textbf{205} (1): 19-52 (1999)
\bibitem{Etingof3}
P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in \emph{Quantum Groups and Lie Theory (Durham, 1999)}, pp. 89-129, Cambridge University Press, Cambridge, 2001.
\bibitem{Fauser2002}
B. Fauser: \emph{A treatise on quantum Clifford Algebras}. Konstanz,
Habilitationsschrift. (arXiv.math.QA/0202059). (2002).
\bibitem{Fauser2004}
B. Fauser: Grade Free product Formulae from Grassman--Hopf Gebras.
Ch. 18 in R. Ablamowicz, Ed., \emph{Clifford Algebras: Applications to Mathematics, Physics and Engineering}, Birkh\"{a}user: Boston, Basel and Berlin, (2004).
\bibitem{Fell}
J. M. G. Fell.: The Dual Spaces of C*--Algebras., \emph{Transactions of the American Mathematical Society}, \textbf{94}: 365--403 (1960).
\bibitem{FernCastro}
F.M. Fernandez and E. A. Castro.: \emph{(Lie) Algebraic Methods in Quantum Chemistry and Physics.}, Boca Raton: CRC Press, Inc (1996).
\bibitem{frohlich:nonab}
A.~Fr{\"o}hlich: Non--Abelian Homological Algebra. {I}.
{D}erived functors and satellites, \emph{Proc. London Math. Soc.}, \textbf{11}(3): 239--252 (1961).
\bibitem{GR02}
R. Gilmore: \emph{Lie Groups, Lie Algebras and Some of Their Applications.},
Dover Publs., Inc.: Mineola and New York, 2005.

\bibitem{Hahn1}
P. Hahn: Haar measure for measure groupoids, \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1--33(1978).

\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34--72(1978).

\end{thebibliography} 

\end{document}