Jump to content

Talk:PlanetPhysics/Complex Systems Biophysics

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: complex systems biophysics
%%% Primary Category Code: 82.39.Rt
%%% Filename: ComplexSystemsBiophysics.tex
%%% Version: 11
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble.  as your 

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \section{Complex Systems Biophysics}

\subsection{Introduction}

{\em Complex Systems Biophysics ($CSB$)} or
{\em Complex systems biology ($CSB$)} is generally described as a non-reductionist, mathematical theory of emergent living organisms or biosystems in terms of a network, \htmladdnormallink{graph}{http://planetphysics.us/encyclopedia/Bijective.html} or \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of integrated interactions between their structural and functional components or \htmladdnormallink{subsystems}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html}. This is often abbreviated to
\htmladdnormallink{systems biology}{http://planetphysics.org/?op=getobj&from=books&id=248} in entries that should be described in fact as {\em complex systems biology}.

\subsection{Categorical ontology: theories of existence levels}
\begin{definition}
A {\em \htmladdnormallink{categorical ontology}{http://planetphysics.us/encyclopedia/CategoricalOntology.html} theory of levels} is often defined as the \htmladdnormallink{classification}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of ontology, or theory of existence of items (objects--in the mathematical sense) by means of the mathematical theory of categories into three levels of \htmladdnormallink{dynamic systems}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html} pertaining to: the physical/chemical level, the biological level, and the psychological level (or human mind). Connections between the three levels of reality and their transformations are represented, respectively, by \htmladdnormallink{morphisms/}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and \htmladdnormallink{natural transformations}{http://planetphysics.us/encyclopedia/VariableCategory2.html} defined for \htmladdnormallink{categories of molecular sets}{http://planetphysics.us/encyclopedia/CategoryOfMolecularSets.html},
categories of $(M,R)$-systems and \htmladdnormallink{organismic supercategories}{http://planetphysics.us/encyclopedia/SuperCategory6.html}.
\end{definition}

From a categorical ontology theory of levels viewpoint, however, the term complex is misplaced because {\em \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} with chaos}, or chaotic \htmladdnormallink{dynamics}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html}, are currently defined by physicists as {\em `complex systems'}, which may have placed a role in the emergence of living systems that are, in fact, {\em super-complex}. Therefore, the more appropriate classification of this relatively new area in mathematical or theoretical biology and Biophysics is super-complex systems biology, $s$-complex systems biology, or simply ``systems biology''--as a more general approach where the focus may be not on the super-complexity aspects of living systems but on \htmladdnormallink{computer}{http://planetphysics.us/encyclopedia/SupercomputerArchitercture.html} modeling of physiological, or functional genomics, integration of physiological flows, signaling pathways or interactomics. However, unlike the case of purely functional $(M,R)$-systems theory in abstract relational biology (\htmladdnormallink{ARB}{http://planetphysics.us/encyclopedia/RSystemsCategory.html}), complex systems biology (or systems biology) proponents are primarily concerned with the integration of data from a multitude of bioinformatics and genomic/proteomic/post-genomic (primarily structural) data; $CSB$ scientists also aim to study {\em interactomics} or {\em metabolomics} primarily through computer-based data analysis, and often Bayesian-based attempts at integration. branches of mathematics that find applications in $CSB$ are, for example: computer modeling, colored graphs, graph-theoretical based approaches, biotopology, genetic, metabolic and signaling network theories, \htmladdnormallink{Bayesian models}{http://planetphysics.us/encyclopedia/GeneNetDigraph.html}, biostatistics, correlation techniques, and less frequently: \htmladdnormallink{abstract algebra}{http://planetphysics.us/encyclopedia/PAdicMeasure.html}, \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} theory, \htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} and \htmladdnormallink{category theory}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} modeling of cell-cell interactions and biodynamics.

\end{document}