Talk:PlanetPhysics/Category of Riemannian Manifolds 2

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: category of pseudo-Riemannian manifolds
%%% Primary Category Code: 02.
%%% Filename: CategoryOfRiemannianManifolds2.tex
%%% Version: 23
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% it should be fine as is for beginners.

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% there are many more packages, add them here as you need 

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}

 \subsection{Introduction}

The very important roles played by Riemannian \htmladdnormallink{metric}{http://planetphysics.us/encyclopedia/MetricTensor.html} and Riemannian \htmladdnormallink{manifolds}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html} in Albert \htmladdnormallink{Einstein's}{http://planetphysics.us/encyclopedia/AlbertEinstein.html} \htmladdnormallink{General Relativity}{http://planetphysics.us/encyclopedia/GeneralResultsOfTheTheory.html} (GR) is well known. The following definition provides the proper mathematical framework for studying different Riemannian manifolds and all possible relationships between different Riemannian metrics defined on different Riemannian manifolds; it also provides one with the more general framework for comparing abstract spacetimes defined `without any Riemann metric, or metric, in general'. The mappings of such Riemannian spacetimes provide the mathematical \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} representing transformations of such spacetimes that are either expanding or `transforming'
in higher dimensions (as perhaps suggested by some of the \htmladdnormallink{superstring}{http://planetphysics.us/encyclopedia/10DBrane.html} `theories'). Other, possible, conformal theory developments based on Einstein's
special relativity (SR) theory are also concisely discussed.



\subsubsection{Category of pseudo-Riemannian manifolds}


The \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of \htmladdnormallink{pseudo-Riemannian manifolds}{http://planetmath.org/?op=getobj&from=objects&name=PseudoRiemannianManifold} $\mathcal{\R}_p$ has as \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} `pseudo-Riemannian manifolds' $\mathbb{R}_p$ representing generalized Minkowski spaces; the latter have been claimed to have applications in general relativity, $GR$. The \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of $\mathcal{\R}_p$ are
mappings between pseudo-Riemannian manifolds,
$$\tau : \mathbb{R}^i_p \to \mathbb{R}^j_p.$$

For a selected pseudo-Riemannian manifold, the endomorphisms
$$\epsilon: \mathbb{R}_p \to   \mathbb{R}_p$$
represent \htmladdnormallink{dynamic}{http://planetphysics.us/encyclopedia/MathematicalFoundationsOfQuantumTheories.html} transformations.

In quantized versions of $\mathbb{R}_p$,
as in `\htmladdnormallink{quantum Riemannian geometry}{http://planetphysics.us/encyclopedia/NonabelianAlgebraicTopology3.html}' (\htmladdnormallink{QRG}{http://planetphysics.us/encyclopedia/GCGR.html}), such dynamic transformations may be defined for example by \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} between (quantum) \htmladdnormallink{spin networks}{http://planetphysics.us/encyclopedia/SimplicialCWComplex.html}, or \htmladdnormallink{quantum spin `foams}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html}'.
In General Relativity space-time may also be modeled as a 4-pseudo Riemannian manifold with signature $(-,+,+,+)$; over such spacetimes one can then consider the \htmladdnormallink{boundary}{http://planetphysics.us/encyclopedia/PiecewiseLinear.html} conditions for
\htmladdnormallink{Einstein's field equations}{http://planetmath.org/?op=getobj&from=objects&name=EinsteinFieldEquations} in order to find and study possible solutions that are physically meaningful; it can be shown however that
such boundary conditions are however insufficient to obtain physical solutions.

\end{document}