Talk:PlanetPhysics/Category of Quantum Automata

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: category of quantum automata
%%% Primary Category Code: 00.
%%% Filename: CategoryOfQuantumAutomata.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{\mathcal G}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}

\begin{document}

 \begin{definition}
Let us recall that as a \htmladdnormallink{Quantum Algebraic Topology}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html} \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, a \emph{\htmladdnormallink{quantum automaton}{http://planetphysics.us/encyclopedia/LQG2.html}} is defined by the \emph{quantum
triple} $Q_A =(\grp,\H -\Re_G, Aut(\grp)$), where $\grp$ is a \emph{(locally compact) \htmladdnormallink{quantum groupoid}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html}},
$\H -\Re_G$ are the unitary \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} of $\grp$ on \htmladdnormallink{rigged Hilbert spaces}{http://planetphysics.us/encyclopedia/I3.html} $\Re_G$ of quantum states and \htmladdnormallink{quantum operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html} on the \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $\H$, and $Aut(\grp)$ is the transformation, or
\emph{automorphism \htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/EquivalenceRelation.html} of quantum transitions} that represents all flip-flop quantum transitions of one cubit each between the permitted quantum states of the quantum automaton.
\end{definition}

With the data from above definition we can now define also the category of quantum automata as follows.

\begin{definition} The \emph{category of quantum automata} $\mathcal{\Q}_A$
is defined as an {\em \htmladdnormallink{algebraic category}{http://planetphysics.us/encyclopedia/CategoryOfLogicAlgebras.html} whose objects are triples} $(\H, \Delta: \H \rightarrow \H, \mu)$ (where $\H$ is either a Hilbert space or a rigged Hilbert space of quantum states and \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} acting on
$\H$, and $\mu$ is a measure related to the \htmladdnormallink{quantum logic}{http://planetphysics.us/encyclopedia/LQG2.html}, $LM$, and (quantum) transition probabilities of this quantum \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html}), and whose \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} are defined between such triples by \htmladdnormallink{homomorphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of Hilbert spaces,
$\O: \H \rightarrow \H$, naturally compatible with the operators $\Delta$, and by homomorphisms between the associated \htmladdnormallink{Haar measure}{http://planetphysics.us/encyclopedia/HigherDimensionalQuantumAlgebroid.html} systems.
\end{definition}

An alternative definition is also possible based on {\em Quantum Algebraic Topology}.

\begin{definition} A \emph{quantum algebraic topology} definition of the {\em \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} of quantum \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} automata} involves the objects specified above in \textbf{Definition 0.1} as quantum automaton triples $(Q_A)$,
and \htmladdnormallink{quantum automata}{http://planetphysics.us/encyclopedia/QuantumComputers.html} homomorphisms defined between such triples; these $Q_A$ morphisms are defined by
\htmladdnormallink{groupoid homomorphisms}{http://planetphysics.us/encyclopedia/EquivalenceRelation.html} $h: \grp \rightarrow \grp ^*$ and $\alpha: Aut(\grp) \rightarrow Aut(\grp ^*)$, together
with unitarity preserving mappings \emph{$u$} between unitary representations of $\grp$ on rigged Hilbert spaces
(or \htmladdnormallink{Hilbert space bundles}{http://planetphysics.us/encyclopedia/HilbertBundle.html}).
\end{definition}

\end{document}