Jump to content

Talk:PlanetPhysics/Categorical Sequence

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: categorical sequence
%%% Primary Category Code: 02.
%%% Filename: CategoricalSequence.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\def\im{\operatorname{im}}
\def\ker{\operatorname{ker}}
% there are many more packages, add them here as you need 

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\cok}{\operatorname{cok}}

\begin{document}

 \begin{definition}
A \emph{categorical sequence} is a linear `\htmladdnormallink{diagram}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}' of \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, or arrows, in an abstract \htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html}.
In a concrete category, such as the category of sets, the categorical sequence consists of sets joined by set-theoretical mappings in linear fashion, such as:
\[
\cdots \rightarrow
A\buildrel f \over \longrightarrow
B \buildrel \phi \over \longrightarrow
Hom_{Set}(A,B),
\]

where $Hom_{Set}(A,B)$ is the set of \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html} from set $A$ to set $B$.
\end{definition}


\subsection{Examples}

\subsubsection{The chain complex is a categorical sequence example:}

Consider a ring $R$ and the chain complex consisting of
a sequence of $R$-modules and \htmladdnormallink{homomorphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}:

\[
\cdots \rightarrow
A_{n+1} \buildrel {d_{n+1}} \over \longrightarrow
A_n \buildrel {d_n} \over \longrightarrow
A_{n-1} \rightarrow
\cdots
\]
(with the additional condition imposed by $d_n\circ d_{n+1} = 0$ for each pair of adjacent homomorphisms $(d_{n+1}, d_n)$; this is equivalent to the condition $\im d_{n+1} \subseteq \ker d_n$ that needs to be satisfied in order to define this categorical sequence completely as a \emph{chain complex}). Furthermore, a sequence of homomorphisms
$$\cdots \rightarrow
A_{n+1} \buildrel {f_{n+1}} \over \longrightarrow
A_n \buildrel {f_n} \over \longrightarrow
A_{n-1} \rightarrow
\cdots $$
is said to be {\it exact} if each pair of adjacent homomorphisms $(f_{n+1}, f_n)$ is \emph{exact}, that is, if ${\rm im} f_{n+1} = {\rm ker} f_n$ for all $n$. This \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} can be then generalized to
morphisms in a categorical exact sequence, thus leading to the corresponding definition of an
\htmladdnormallink{exact sequence}{http://planetmath.org/encyclopedia/ExactSequence2.html} in an \htmladdnormallink{abelian category}{http://planetphysics.us/encyclopedia/AbelianCategory2.html}.

\begin{remark}
Inasmuch as \htmladdnormallink{categorical diagrams}{http://planetphysics.us/encyclopedia/CategoricalDiagramsDefinedByFunctors.html} can be defined as \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, exact sequences of special \htmladdnormallink{types}{http://planetphysics.us/encyclopedia/Bijective.html} of morphisms
can also be regarded as the corresponding, special functors. Thus, exact sequences in Abelian categories
can be regarded as certain functors of Abelian categories; the details of such functorial (abelian) constructions
are left to the reader as an exercise. Moreover, in (commutative or Abelian) homological algebra, an
exact functor is simply defined as a functor $F$ between two Abelian categories, $\mathcal{A}$ and $\mathcal{B}$, $F: \mathcal{A} \to \mathcal{B}$, which preserves categorical exact sequences, that is, if $F$ carries a short exact sequence $0 \to C \to D \to E \to 0$ (with $0, C, D$ and $E$ \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in $\mathcal{A}$) into the corresponding sequence in the Abelian category $\mathcal{B}$, ($0 \to F(C) \to F(D) \to F(E) \to 0$), which is also exact (in $\mathcal{B}$).
\end{remark}

\end{document}