Jump to content

Talk:PlanetPhysics/Categorical Quantum LM Algebraic Logic 2

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01 %%% Primary Title: quantum field theories (QFT) %%% Primary Category Code: 03.65.Fd %%% Filename: CategoricalQuantumLMAlgebraicLogic2.tex %%% Version: 12 %%% Owner: bci1 %%% Author(s): bci1 %%% PlanetPhysics is released under the GNU Free Documentation License. %%% You should have received a file called fdl.txt along with this file. %%% If not, please write to gnu@gnu.org. \documentclass[12pt]{article} \pagestyle{empty} \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in} \setlength{\headsep}{0.00in} \setlength{\headheight}{0.00in} \setlength{\evensidemargin}{0.00in} \setlength{\oddsidemargin}{0.00in} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.00in} \setlength{\voffset}{0.00in} \setlength{\hoffset}{0.00in} \setlength{\marginparwidth}{0.00in} \setlength{\marginparsep}{0.00in} \setlength{\parindent}{0.00in} \setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble. as your knowledge % of TeX increases, you will probably want to edit this, but % it should be fine as is for beginners.

% almost certainly you want these \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts}

% used for TeXing text within eps files %\usepackage{psfrag} % need this for including graphics (\includegraphics) %\usepackage{graphicx} % for neatly defining theorems and propositions %\usepackage{amsthm} % making logically defined graphics %\usepackage{xypic}

% there are many more packages, add them here as you need them

% define commands here

\begin{document}

This topic links the general framework of \htmladdnormallink{quantum field theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html} to \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} symmetries

and other relevant mathematical \htmladdnormallink{concepts}{http://planetphysics.us/encyclopedia/PreciseIdea.html} utilized to represent \htmladdnormallink{quantum fields}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} and their fundamental properties.

\subsection{Fundamental, mathematical concepts in quantum field theory }

\emph{Quantum field theory (QFT)} is the general framework for describing the physics of relativistic quantum \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/GenericityInOpenSystems.html}, such as, notably, accelerated elementary \htmladdnormallink{particles}{http://planetphysics.us/encyclopedia/Particle.html}.

\htmladdnormallink{Quantum electrodynamics}{http://planetphysics.us/encyclopedia/QED.html} \emph{(QED)}, and QCD or quantum chromodynamics are only two distinct theories among several quantum field theories, as their fundamental \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} correspond, respectively, to very different-- $U(1)$ and $SU(3)$-- group symmetries. This obviates the need for `more fundamental' , or \htmladdnormallink{extended quantum symmetries}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html}, such as those afforded by either larger groups such as $SU(3) \times SU(2) \times U(1)$ or spontaneously broken, special symmetries of a less restrictive kind present in `\htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/QuantumGroupoids.html}' as for example in \htmladdnormallink{weak Hopf algebra}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html} representations, or in \htmladdnormallink{locally compact groupoid}{http://planetphysics.us/encyclopedia/LocallyCompactGroupoid.html}, $G_{lc}$ unitary representations, and so on, to the higher dimensional (quantum) symmetries of \htmladdnormallink{quantum double groupoids}{http://planetphysics.us/encyclopedia/LongRangeCoupling.html}, quantum \htmladdnormallink{double algebroids}{http://planetphysics.us/encyclopedia/GeneralizedSuperalgebras.html}, \htmladdnormallink{quantum categories}{http://planetphysics.us/encyclopedia/QuantumCategories.html},quantum \htmladdnormallink{supercategories}{http://planetphysics.us/encyclopedia/SuperdiagramsAsHeterofunctors.html} and/or quantum \htmladdnormallink{supersymmetry superalgebras}{http://planetphysics.us/encyclopedia/HamiltonianAlgebroid3.html} (or graded `\htmladdnormallink{Lie' algebras}{http://planetphysics.us/encyclopedia/BilinearMap.html}), see, for example, their full development in a recent QFT textbook \cite{Weinberg2003} that lead to \htmladdnormallink{superalgebroids}{http://planetphysics.us/encyclopedia/GeneralizedSuperalgebras.html} in \htmladdnormallink{quantum gravity}{http://planetphysics.us/encyclopedia/LQG2.html} or \htmladdnormallink{QCD}{http://planetphysics.us/encyclopedia/ExtendedQuantumSymmetries.html}.


\begin{thebibliography}{9}

\bibitem{AABB70} A. Abragam and B. Bleaney.: {\em Electron Paramagnetic Resonance of Transition Ions.} Clarendon Press: Oxford, (1970).

\bibitem{AS} E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of Operator Algebras}, Birkh\"auser, Boston--Basel--Berlin (2003).

\bibitem{Y} D.N. Yetter., TQFT's from homotopy 2-types. \textit{J. Knot Theor}. \textbf{2}: 113--123(1993).

\bibitem{Weinberg2003} S. Weinberg.: \emph{The Quantum Theory of Fields}. Cambridge, New York and Madrid: Cambridge University Press, Vols. 1 to 3, (1995--2000).

\bibitem{Weinstein} A. Weinstein : Groupoids: unifying internal and external symmetry, \emph{Notices of the Amer. Math. Soc.} \textbf{43} (7): 744--752 (1996).

\bibitem{WB} J. Wess and J. Bagger: \emph{Supersymmetry and Supergravity}, Princeton University Press, (1983).

\bibitem{WJ1} J. Westman: Harmonic analysis on groupoids, \textit{Pacific J. Math.} \textbf{27}: 621-632. (1968).

\bibitem{WJ1} J. Westman: Groupoid theory in algebra, topology and analysis., \textit{University of California at Irvine} (1971).

\bibitem{Wickra} S. Wickramasekara and A. Bohm: Symmetry representations in the rigged Hilbert space formulation of quantum mechanics, \emph{J. Phys. A} \textbf{35}(3): 807-829 (2002).

\bibitem{Wightman1} Wightman, A. S., 1956, Quantum Field Theory in Terms of Vacuum Expectation Values, Physical Review, \textbf{101}: 860--866.

\bibitem{Wightman--Garding3} Wightman, A.S. and Garding, L., 1964, Fields as Operator--Valued Distributions in Relativistic Quantum Theory, Arkiv f\"ur Fysik, 28: 129--184.

\bibitem{Woronowicz1} S. L. Woronowicz : Twisted {\em SU(2)} group : An example of a non--commutative differential calculus, RIMS, Kyoto University \textbf{23} (1987), 613--665.

\end{thebibliography}

\end{document}