Talk:PlanetPhysics/Canonical Quantization

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

 
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: canonical quantization
%%% Primary Category Code: 00.
%%% Filename: CanonicalQuantization.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

\usepackage{amssymb, amsmath, amsthm}
%\usepackage{xypic}

\newtheorem{thm}{Theorem}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{lemma}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}

\theoremstyle{definition}
\newtheorem{dfn}[thm]{Definition}

\theoremstyle{remark}
\newtheorem*{rmk}{Remark}
\newtheorem{ex}{Example}

\newcommand{\lie}{\mathcal{L}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\grad}{\nabla}
\newcommand{\reals}{\mathbb{R}}
\DeclareMathOperator{\Op}{Op}

\begin{document}

 Canonical quantization is a method of relating, or associating, a classical \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} of the form $(T^*X, \omega, H)$, where $X$ is a \htmladdnormallink{manifold}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html}, $\omega$ is the canonical symplectic form on $T^*X$, with a (more complex) quantum system represented by $H \in C^\infty(X)$, where $H$ is the
Hamiltonian operator. Some of the early formulations of \htmladdnormallink{quantum mechanics}{http://planetphysics.us/encyclopedia/QuantumParadox.html} used such quantization methods under the umbrella of the \emph{\htmladdnormallink{correspondence principle}{http://planetphysics.us/encyclopedia/PrincipleOfCorrespondingStates.html} or postulate}.
The latter states that a correspondence exists between certain classical and \htmladdnormallink{quantum operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra5.html}, (such as the \htmladdnormallink{Hamiltonian operators}{http://planetphysics.us/encyclopedia/HamiltonianOperator3.html}) or algebras (such as Lie or Poisson (brackets)), with the classical ones being in the real ($\mathbb{R}$) \htmladdnormallink{domain}{http://planetphysics.us/encyclopedia/Bijective.html}, and the quantum ones being in the complex ($\mathbb{C}$) domain.
Whereas all classical \htmladdnormallink{Observables and States}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html} are specified only by real numbers, the \htmladdnormallink{'wave' amplitudes}{http://planetphysics.us/encyclopedia/TransversalWave.html} in \htmladdnormallink{quantum theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html} are represented by complex \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html}.

Let $(x^i, p_i)$ be a set of Darboux coordinates on $T^*X$. Then we may obtain from each coordinate function an \htmladdnormallink{operator}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} on the \htmladdnormallink{Hilbert space}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $\mathcal{H} = L^2(X, \mu)$, consisting of functions on $X$ that are square-integrable with respect to some measure $\mu$, by the \emph{operator substitution} rule:
\begin{align}
x^i \mapsto \hat{x}^i &= x^i \cdot, \label{sub1}\\
p_i \mapsto \hat{p}_i &= -i \hbar \pdiff{}{x^i} \label{sub2},
\end{align}
where $x^i \cdot$ is the ``multiplication by $x^i$'' operator. Using this rule, we may obtain operators from a larger class of functions. For example,
\begin{enumerate}
\item $x^i x^j \mapsto \hat{x}^i \hat{x}^j = x^i x^j \cdot$,
\item $p_i p_j \mapsto \hat{p}_i \hat{p}_j = -\hbar^2 \pdiff{^2}{x^i x^j}$,
\item if $i \neq j$ then $x^i p_j \mapsto \hat{x}^i \hat{p}_j = -i \hbar x^i \pdiff{}{x^j}$.
\end{enumerate}

\begin{rmk}
The substitution rule creates an ambiguity for the function $x^i p_j$ when $i=j$, since $x^i p_j = p_j x^i$, whereas $\hat{x}^i \hat{p}_j \neq \hat{p}_j \hat{x}^i$. This is the \emph{operator ordering} problem. One possible solution is to choose
\begin{equation*}x^i p_j \mapsto \frac{1}{2}\left(\hat{x}^i \hat{p}_j + \hat{p}_j \hat{x}^i\right),\end{equation*}
since this choice produces an operator that is self-adjoint and therefore corresponds to a physical \htmladdnormallink{observable}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html}. More generally, there is a construction known as \emph{Weyl \htmladdnormallink{quantization}{http://planetphysics.us/encyclopedia/MoyalDeformation.html}} that uses \htmladdnormallink{Fourier transforms}{http://planetphysics.us/encyclopedia/FourierTransforms.html} to extend the substitution rules (\ref{sub1})-(\ref{sub2}) to a map
\begin{align*}
C^\infty(T^*X) &\to \Op (\mathcal{H}) \\
f &\mapsto \hat{f}.
\end{align*}
\end{rmk}

\begin{rmk}
This procedure is called ``canonical'' because it preserves the canonical Poisson brackets. In particular, we have that
\begin{equation*}\frac{-i}{\hbar}[\hat{x}^i, \hat{p}_j] := \frac{-i}{\hbar}\left(\hat{x}^i\hat{p}_j - \hat{p}_j\hat{x}^i\right) = \delta^i_j,
\end{equation*}
which agrees with the Poisson bracket $\{ x^i, p_j \} = \delta^i_j$.
\end{rmk}

\begin{ex}
Let $X = \reals$. The \htmladdnormallink{Hamiltonian}{http://planetphysics.us/encyclopedia/Hamiltonian2.html} function for a one-dimensional \htmladdnormallink{point particle}{http://planetphysics.us/encyclopedia/CenterOfGravity.html} with \htmladdnormallink{mass}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html} $m$ is
\begin{equation*}
H = \frac{p^2}{2m} + V(x),
\end{equation*}
where $V(x)$ is the potential \htmladdnormallink{energy}{http://planetphysics.us/encyclopedia/CosmologicalConstant.html}. Then, by operator substitution, we obtain the Hamiltonian operator
\begin{equation*}
\hat{H} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + V(x).
\end{equation*}
\end{ex}

\end{document}