Talk:PlanetPhysics/CW Complex Representation Theorems
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: CW-complex representation theorems in QAT
%%% Primary Category Code: 02.
%%% Filename: CWComplexRepresentationTheorems.tex
%%% Version: 5
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your knowledge
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{CW-complex representation theorems in quantum algebraic topology}
\emph{\htmladdnormallink{QAT}{http://planetphysics.us/encyclopedia/QAT.html} \htmladdnormallink{theorems}{http://planetphysics.us/encyclopedia/Formula.html} for \htmladdnormallink{quantum state spaces}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} of \htmladdnormallink{spin networks}{http://planetphysics.us/encyclopedia/SimplicialCWComplex.html} and \htmladdnormallink{quantum spin foams}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html} based on $CW$, $n$-connected models and fundamental theorems.}
Let us consider first a lemma in order to facilitate the proof of the following theorem concerning
spin networks and quantum spin foams.
\textbf{Lemma}
\emph{Let $Z$ be a $CW$ complex that has the (three--dimensional) Quantum Spin `Foam' (QSF) as a subspace. Furthermore, let $f: Z \rightarrow QSS$ be a map so that $f \mid QSF = 1_{QSF}$, with \htmladdnormallink{QSS}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} being an arbitrary, \htmladdnormallink{local quantum state space}{http://planetphysics.us/encyclopedia/QuantumSpinNetworkFunctor2.html} (which is not necessarily finite). There exists an $n$-connected $CW$ model (Z,QSF) for the pair (QSS,QSF) such that}:
$f_*: \pi_i (Z) \rightarrow \pi_i (QST)$,
is an \htmladdnormallink{isomorphism}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} for $i>n$ and it is a \htmladdnormallink{monomorphism}{http://planetphysics.us/encyclopedia/InjectiveMap.html} for $i=n$.
The $n$-connected $CW$ model is unique up to \htmladdnormallink{homotopy}{http://planetphysics.us/encyclopedia/ThinEquivalence.html} equivalence. (The $CW$ complex, $Z$, considered here is a homotopic `hybrid' between QSF and QSS).
\textbf{Theorem 2.} (\htmladdnormallink{Baianu, Brown and Glazebrook, 2007: In Section 9 of a recent NAQAT preprint}{http://planetphysics.org/?op=getobj&from=lec&id=61}).
For every pair $(QSS,QSF)$ of \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} spaces defined as in \textbf{Lemma 1},
with QSF nonempty, there exist $n$-connected $CW$ models $f: (Z, QSF) \rightarrow (QSS, QSF)$
for all $n \geq 0$. Such models can be then selected to have the property that the $CW$ complex
$Z$ is obtained from QSF by attaching cells of dimension $n>2$, and therefore $(Z,QSF)$ is $n$-connected.
Following \textbf{Lemma 01} one also has that the map:
$f_* : \pi_i (Z) \rightarrow \pi_i (QSS)$ which is an isomorphism for $i>n$, and it is a
monomorphism for $i=n$.
\emph{Note} See also the definitions of (quantum) \emph{\htmladdnormallink{spin networks and spin foams}{http://planetphysics.us/encyclopedia/SpinNetworksAndSpinFoams.html}.}
\end{document}