Talk:PlanetPhysics/Bessel Functions and Their Applications to Diffraction by Helical Structures

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Bessel functions and diffraction by helical structures
%%% Primary Category Code: 02.30.-f
%%% Filename: BesselFunctionsAndTheirApplicationsToDiffractionByHelicalStructures.tex
%%% Version: 43
%%% Owner: pahio
%%% Author(s): bci1, rspuzio, pahio
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble. as your 

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\begin{document}


The linear \htmladdnormallink{differential equation}{http://planetphysics.us/encyclopedia/DifferentialEquations.html} \begin{align}
x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+(x^2-p^2)y = 0,
\end{align}
in which $p$ is a constant (non-negative if it is real), is called the {\em Bessel's equation}.\, We derive its general solution by trying the series form
\begin{align}
y = x^r\sum_{k=0}^\infty a_kx^k = \sum_{k=0}^\infty a_kx^{r+k},
\end{align}
due to Frobenius.\, Since the \htmladdnormallink{parameter}{http://planetphysics.us/encyclopedia/Parameter.html} $r$ is indefinite, we may regard $a_0$ as distinct from 0.

We substitute (2) and the derivatives of the series in (1):
$$
x^2\sum_{k=0}^\infty(r+k)(r+k-1)a_kx^{r+k-2}+
x\sum_{k=0}^\infty(r+k)a_kx^{r+k-1}+
(x^2-p^2)\sum_{k=0}^\infty a_kx^{r+k} = 0.
$$
Thus the coefficients of the \htmladdnormallink{powers}{http://planetphysics.us/encyclopedia/Power.html} $x^r$, $x^{r+1}$, $x^{r+2}$ and so on must vanish, and we get the \htmladdnormallink{system}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} of equations
\begin{align}
\begin{cases}
{[}r^2-p^2{]}a_0 = 0,\\
{[}(r+1)^2-p^2{]}a_1 = 0,\\
{[}(r+2)^2-p^2{]}a_2+a_0 = 0,\\
\qquad \qquad \ldots\\
{[}(r+k)^2-p^2{]}a_k+a_{k-2} = 0.
\end{cases}
\end{align}
The last of those can be written
$$(r+k-p)(r+k+p)a_k+a_{k-2} = 0.$$
Because\, $a_0 \neq 0$,\, the first of those (the indicial equation) gives\, $r^2-p^2 = 0$,\, i.e. we have the roots
$$r_1 =  p,\,\, r_2 = -p.$$
Let's first look the the solution of (1) with\, $r = p$;\, then\, $k(2p+k)a_k+a_{k-2} = 0$,\, and thus\,
$$a_k = -\frac{a_{k-2}}{k(2p+k).}$$
From the system (3) we can solve one by one each of the coefficients $a_1$, $a_2$, $\ldots$\, and express them with $a_0$ which remains arbitrary.\, Setting for $k$ the integer values we get
\begin{align}
\begin{cases}
a_1 = 0,\,\,a_3 = 0,\,\ldots,\, a_{2m-1} = 0;\\
a_2 = -\frac{a_0}{2(2p+2)},\,\,a_4 = \frac{a_0}{2\cdot4(2p+2)(2p+4)},\,\ldots,\,\,
a_{2m} = \frac{(-1)^ma_0}{2\cdot4\cdot6\cdots(2m)(2p+2)(2p+4)\ldots(2p+2m)}
\end{cases}
\end{align}
(where\, $m = 1,\,2,\,\ldots$).
Putting the obtained coefficients to (2) we get the particular solution
\begin{align}
y_1 := a_0x^p \left[1\!-\!\frac{x^2}{2(2p\!+\!2)}\!
+\!\frac{x^4}{2\!\cdot\!4(2p\!+\!2)(2p\!+\!4)}
\!-\!\frac{x^6}{2\!\cdot\!4\!\cdot\!6(2p\!+\!2)(2p\!+\!4)(2p\!+\!6)}\!+-\ldots\right]
\end{align}

In order to get the coefficients $a_k$ for the second root\, $r_2 = -p$\, we have to look after that
$$(r_2+k)^2-p^2 \neq 0,$$
or\, $r_2+k \neq p = r_1$.\, Therefore
$$r_1-r_2 = 2p \neq k$$
where $k$ is a positive integer.\, Thus, when $p$ is not an integer and not an integer added by $\frac{1}{2}$, we get the second particular solution, gotten of (5) by replacing $p$ by $-p$:
\begin{align}
y_2 := a_0x^{-p}\!\left[1
\!-\!\frac{x^2}{2(-2p\!+\!2)}\!+\!\frac{x^4}{2\!\cdot\!4(-2p\!+\!2)(-2p\!+\!4)}
\!-\!\frac{x^6}{2\!\cdot\!4\!\cdot\!6(-2p\!+\!2)(-2p\!+\!4)(-2p\!+\!6)}\!+-\ldots\right]
\end{align}

The power series of (5) and (6) converge for all values of $x$ and are linearly independent (the ratio $y_1/y_2$ tends to 0 as\, $x\to\infty$).\, With the appointed value
$$a_0 = \frac{1}{2^p\,\Gamma(p+1)},$$
the solution $y_1$ is called the {\em Bessel function of the first kind and of order $p$} and denoted by $J_p$.\, The similar definition is set for the first kind Bessel function of an arbitrary order\, $p\in \mathbb{R}$ (and $\mathbb{C}$).
For\, $p\notin \mathbb{Z}$\, the general solution of the Bessel's differential equation is thus
$$y := C_1J_p(x)+C_2J_{-p}(x),$$
where\, $J_{-p}(x) = y_2$\, with\, $a_0 = \frac{1}{2^{-p}\Gamma(-p+1)}$.

The explicit expressions for $J_{\pm p}$ are
\begin{align}
J_{\pm p}(x) =
\sum_{m=0}^\infty
\frac{(-1)^m}{m!\,\Gamma(m\pm p+1)}\left(\frac{x}{2}\right)^{2m\pm p},
\end{align}
which are obtained from (5) and (6) by using the last formula for \htmladdnormallink{gamma function}{http://planetphysics.us/encyclopedia/GammaFunction.html}.

E.g. when\, $p = \frac{1}{2}$\, the series in (5) gets the form
$$y_1 = \frac{x^{\frac{1}{2}}}{\sqrt{2}\,\Gamma(\frac{3}{2})}\left[1\!-\!\frac{x^2}{2\!\cdot\!3}\!+\!\frac{x^4}{2\!\cdot\!4\!\cdot\!3\!\cdot\!5}\!-\!\frac{x^6}{2\!\cdot\!4\cdot\!6\!\cdot\!3\!\cdot\!5\!\cdot\!7}\!+-\ldots\right] =
\sqrt{\frac{2}{\pi x}}\left(x\!-\!\frac{x^3}{3!}\!+\!\frac{x^5}{5!}\!-+\ldots\right).$$
Thus we get
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\sin{x};$$
analogically (6) yields
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\cos{x},$$
and the general solution of the equation (1) for\, $p = \frac{1}{2}$\, is
$$y := C_1J_{\frac{1}{2}}(x)+C_2J_{-\frac{1}{2}}(x).$$


In the case that $p$ is a non-negative integer $n$, the ``+'' case of (7) gives the solution
$$J_{n}(x) =
\sum_{m=0}^\infty
\frac{(-1)^m}{m!\,(m+n)!}\left(\frac{x}{2}\right)^{2m+n},
$$
but for\, $p = -n$\, the expression of $J_{-n}(x)$ is $(-1)^nJ_n(x)$, i.e. linearly dependent of $J_n(x)$.\, It can be shown that the other solution of (1) ought to be searched in the form\,
$y = K_n(x) = J_n(x)\ln{x}+x^{-n}\sum_{k=0}^\infty b_kx^k$.\, Then the general solution is\, $y := C_1J_n(x)+C_2K_n(x)$.\\

\textbf{Other formulae}

The first kind Bessel functions of integer order have the generating \htmladdnormallink{function}{http://planetphysics.us/encyclopedia/Bijective.html} $F$:
\begin{align}
F(z,\,t) = e^{\frac{z}{2}(t-\frac{1}{t})}
= \sum_{n=-\infty}^\infty J_n(z)t^n
\end{align}
This function has an essential singularity at\, $t = 0$\, but is analytic elsewhere in $\mathbb{C}$; thus $F$ has the Laurent expansion in that point.\, Let us prove (8) by using the general expression
$$c_n = \frac{1}{2\pi i}\oint_{\gamma} \frac{f(t)}{(t-a)^{n+1}}\,dt$$
of the coefficients of Laurent series.\, Setting to this\, $a := 0$,\,
$f(t) := e^{\frac{z}{2}(t-\frac{1}{t})}$,\, $\zeta := \frac{zt}{2}$\, gives
$$c_n = \frac{1}{2\pi i}
\oint_\gamma\frac{e^{\frac{zt}{2}}e^{-\frac{z}{2t}}}{t^{n+1}}\,dt =
\frac{1}{2\pi i}\left(\frac{z}{2}\right)^n\!
\oint_\delta\frac{e^\zeta e^{-\frac{z^2}{4\zeta}}}{\zeta^{n+1}}\,d\zeta =
\sum_{m=0}^\infty\frac{(-1)^m}{m!}\left(\frac{z}{2}\right)^{2m+n}\!
\frac{1}{2\pi i}\oint_\delta \zeta^{-m-n-1}e^\zeta\,d\zeta.$$
The paths $\gamma$ and $\delta$ go once round the origin anticlockwise in the $t$-plane and $\zeta$-plane, respectively.\, Since the residue of $\zeta^{-m-n-1}e^\zeta$ in the origin is\, $\frac{1}{(m+n)!} = \frac{1}{\Gamma(m+n+1)}$,\, the residue theorem gives
$$c_n = \sum_{m=0}^\infty
\frac{(-1)^m}{m!\Gamma(m+n+1)}\left(\frac{z}{2}\right)^{2m+n} = J_n(z).$$
This means that $F$ has the Laurent expansion (8).

By using the generating function, one can easily derive other formulae, e.g.
the integral representation of the Bessel functions of integer order:
$$J_n(z) = \frac{1}{\pi}\int_0^\pi\cos(n\varphi-z\sin{\varphi})\,d\varphi$$
Also one can obtain the addition \htmladdnormallink{formula}{http://planetphysics.us/encyclopedia/Formula.html} $$J_n(x+y) = \sum_{\nu=-\infty}^{\infty}J_\nu(x)J_{n-\nu}(y)$$
and the series representations of cosine and sine:
$$\cos{z} = J_0(z)-2J_2(z)+2J_4(z)-+\ldots$$
$$\sin{z} = 2J_1(z)-2J_3(z)+2J_5(z)-+\ldots$$

\section{Applications of Bessel functions in Physics and Engineering}

One notes also that Bessel's equation arises in the derivation of separable solutions to \htmladdnormallink{Laplace's equation}{http://planetphysics.us/encyclopedia/FluorescenceCrossCorrelationSpectroscopy.html}, and also for the Helmholtz equation in either cylindrical or spherical coordinates. The Bessel functions are therefore very important in many physical problems involving \htmladdnormallink{wave}{http://planetphysics.us/encyclopedia/CosmologicalConstant2.html} propagation, wave diffraction phenomena--including \htmladdnormallink{X-ray diffraction}{http://planetphysics.us/encyclopedia/LaserProducedPlasma.html} by certain molecular crystals, and also \htmladdnormallink{static}{http://planetphysics.us/encyclopedia/Statics.html} potentials. The solutions to most problems in cylindrical coordinate systems are found in terms of Bessel functions of integer order ($\alpha = n$), whereas in spherical coordinates, such solutions involve Bessel functions of half-integer orders ($\alpha = n + 1/2$).
Several examples of Bessel function solutions are:

\begin{enumerate}
\item the diffraction pattern of a helical \htmladdnormallink{molecule}{http://planetphysics.us/encyclopedia/Molecule.html} wrapped around a cylinder computed from the \htmladdnormallink{Fourier transform}{http://planetphysics.us/encyclopedia/FourierTransforms.html} of the helix in cylindrical coordinates;
\item electromagnetic waves in a cylindrical waveguide
\item diffusion problems on a lattice.
\item vibration modes of a thin circular, tubular or annular membrane (such as a drum, other membranophone, the vocal cords, etc.)
\item \htmladdnormallink{heat}{http://planetphysics.us/encyclopedia/Heat.html} \htmladdnormallink{conduction}{http://planetphysics.us/encyclopedia/Conduction.html} in a cylindrical \htmladdnormallink{object}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} \end{enumerate}

In engineering Bessel functions also have useful properties for signal processing and filtering noise as for example by using Bessel filters, or in FM synthesis and windowing signals.

\subsection{Applications of Bessel functions in Physical Crystallography}
The first example listed above was shown to be especially important in molecular
biology for the structures of helical secondary structures in certain proteins (e.g. $\alpha-helix$) or in molecular genetics for finding the double-helix
structure of Deoxyribonucleic Acid (\htmladdnormallink{DNA}{http://planetphysics.us/encyclopedia/FCS3.html}) molecular crystals with extremely important consequences for genetics, biology, mutagenesis, molecular evolution,
contemporary life sciences and medicine. This finding is further detailed in a related entry.

\begin{thebibliography}{99}
\bibitem{FBessel1824}
F. Bessel, ``Untersuchung des Theils der planetarischen St\"orungen'', {\em Berlin Abhandlungen} (1824), article 14.

\bibitem{FRGG53}
Franklin, R.E. and Gosling, R.G. received. 6th March 1953. Acta Cryst. (1953). 6, 673 The Structure of Sodium Thymonucleate Fibres I. The Influence of Water Content Acta Cryst. (1953). 6,678 : The Structure of Sodium Thymonucleate Fibres II. The Cylindrically Symmetrical Patterson Function.

\bibitem{Arfken-Weber2k5}
Arfken, George B. and Hans J. Weber, {\em Mathematical Methods for Physicists}, 6th edition, Harcourt: San Diego, 2005. ISBN 0-12-059876-0.

\bibitem{Bowman58}
Bowman, Frank. {\em Introduction to Bessel Functions.}. Dover: New York, 1958). ISBN 0-486-60462-4.

\bibitem{Cochran-Crick-Vand52}
Cochran, W., Crick, F.H.C. and Vand V. 1952. The Structure of Synthetic Polypeptides. 1. The Transform of atoms on a helic. {\em Acta Cryst.} {\bf 5}(5):581-586.

\bibitem{Crick53a}
Crick, F.H.C. 1953a. The Fourier Transform of a Coiled-Coil., {\em Acta Crystallographica} {\bf 6}(8-9):685-689.

\bibitem{Crick53b}
Crick, F.H.C. 1953. The packing of $\alpha$-helices- Simple coiled-coils.
{\em Acta Crystallographica}, {\bf 6}(8-9):689-697.

\bibitem{WJ-CFC53a}
Watson, J.D; Crick F.H.C. 1953a. Molecular Structure of Nucleic Acids - A Structure for Deoxyribose Nucleic Acid., {\em Nature} 171(4356):737-738.

\bibitem{NP}{\sc N. Piskunov:} {\em Diferentsiaal- ja integraalarvutus k\~{o}rgematele tehnilistele \~{o}ppeasutustele}.\, Kirjastus Valgus, Tallinn  (1966).
\bibitem{KK}{\sc K. Kurki-Suonio:} {\em Matemaattiset apuneuvot}.\, Limes r.y., Helsinki (1966).

\bibitem{WJ-CFC53c}
Watson, J.D; Crick F.H.C. 1953c. The Structure of DNA., {\em Cold Spring Harbor Symposia on Qunatitative Biology} {\bf 18}:123-131.

\bibitem{GRJZ2k7}
I.S. Gradshteyn, I.M. Ryzhik, Alan Jeffrey, Daniel Zwillinger, editors. {\em Table of Integrals, Series, and Products.},  Academic Press, 2007.
ISBN 978-0-12-373637-6.

\bibitem{Spain-Smith70}
Spain,B., and M. G. Smith, {\em Functions of mathematical physics.}, Van Nostrand Reinhold Company, London, 1970. Chapter 9: Bessel functions.

\bibitem{AM-SI1972}
Abramowitz, M. and Stegun, I. A. (Eds.). Bessel Functions , Ch.9.1 in {\em Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, 9th printing. New York: Dover, pp. 358-364, 1972.

\bibitem{Arfken1985}
Arfken, G. Bessel Functions of the First Kind, and ``Orthogonality.'' Chs.11.1 and 11.2 in {\em Mathematical Methods for Physicists}, 3rd ed. Orlando, FL: Academic Press, pp. 573-591 and 591-596, 1985.

\bibitem{Hansen1843}
Hansen, P. A. 1843. Ermittelung der absoluten St\"orungen in Ellipsen von beliebiger Excentricit\"at und Neigung, I. {\em Schriften der Sternwarte Seeberg. Gotha}, 1843.

\bibitem{Lehmer1932}
Lehmer, D. H. Arithmetical Periodicities of Bessel Functions. Ann. Math. 33, 143-150, 1932.

\bibitem{LL83}
Le Lionnais, F. {\em Les nombres remarquables} (En: Remarcable numbers). Paris: Hermann, 1983.

\bibitem{MP-FH53}
Morse, P. M. and Feshbach, H. {\em Methods of Theoretical Physics, Part I}. New York: McGraw-Hill, pp. 619-622, 1953.

\bibitem{Schl1857}
Schl\"omilch, O. X.  1857. Ueber die Bessel'schen Function. {\em Z. f\"ur Math. u. Phys.} 2: 137-165.

\bibitem{Spanier87}
Spanier, J. and Oldham, K. B. "The Bessel Coefficients  and " and "The Bessel Function ." Chs. 52-53 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 509-520 and 521-532, 1987.

\bibitem{Wall1948}
Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.

\bibitem{Weisstein2009}
Weisstein, Eric W. "Bessel Functions of the First Kind."
\htmladdnormallink{From MathWorld--A Wolfram Web Resource.}{http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html} and
\htmladdnormallink{Graphs of Bessel Functions of the Second Kind}{http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html}

\bibitem{Watson66}
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.

\bibitem{Watson95}
Watson, G. N. {\em A Treatise on the Theory of Bessel Functions.}, (1995) Cambridge University Press. ISBN 0-521-48391-3.
\end{thebibliography} 

\end{document}