Talk:PlanetPhysics/Algebraic Category of LMn Logic Algebras
Add topicAppearance
Original TeX Content from PlanetPhysics Archive
[edit source]%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: algebraic category of LMn -logic algebras
%%% Primary Category Code: 00.
%%% Filename: AlgebraicCategoryOfLMnLogicAlgebras.tex
%%% Version: 4
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}
\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}
\usepackage{html}
% this is the default PlanetPhysics preamble. as your knowledge
% define commands here
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym,color,enumerate}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\usepackage{setspace}
\xyoption{curve}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\newtheorem{exe}{Example}[section]
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}} \numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\def \C{\mathsf{C}}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
%%N-Logic specific macros%%
\newcommand{\B}{{\mathcal B}}
\newcommand{\MV}{{\mathcal MV}}
\newcommand{\LM}{{\mathcal LM}_n}
\newcommand{\CLM}{{\mathcal CLM}_n}
\newcommand{\Post}{{\mathcal P}ost_n}
\newcommand{\Ra}{\Rightarrow}
\newcommand{\GMn}{$NMV_n$}
\newcommand{\LMn}{$LM_n$}
\newcommand{\NMVn}{NMV_n}
\newtheorem{defi}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{rem}{Remark}
\newtheorem{coro}{Corollary}
\newtheorem{lema}{Lemma}
\newcommand{\lmn}{LM_{n}}
\newcommand{\lmt}{LM_{\Th}}
\newcommand{\ov}{\overline}
\newcommand{\sm}{\smile}
\newcommand{\lmrn}{LMR_{n}}
\renewcommand{\t}{\times}
\newcommand{\eu}{\equiv_{1}}
\newcommand{\lu}{\leq_{1}}
\newcommand{\ez}{\equiv_{0}}
\newcommand{\lz}{\leq_{0}}
\newcommand{\Su}{S_{1}}
\newcommand{\Sd}{S_{2}}
\newcommand{\Si}{S_{i}}
\newcommand{\pri}{pr_{i}}
\newcommand{\pru}{pr_{1}}
\newcommand{\prd}{pr_{2}}
\newcommand{\pii}{\pi_{i}}
\newcommand{\piu}{\pi_{1}}
\newcommand{\pid}{\pi_{2}}
\newcommand{\unudoi}{\{1,2\}}
\newcommand{\Li}{L_{i}}
\newcommand{\Lu}{L_{1}}
\newcommand{\Ld}{L_{2}}
\newcommand{\ioi}{\iota_{i}}
\newcommand{\iou}{\iota_{1}}
\newcommand{\iod}{\iota_{2}}
\newcommand{\iii}{\iou\t\iod}
\newcommand{\K}{{\cal K}}
\newcommand{\sta}{\stackrel}
\newcommand{\fu}{f_{1}}
\newcommand{\fn}{f_{n}}
\newcommand{\fk}{f_{k}}
\newcommand{\e}{\eta}
\newcommand{\eps}{\epsilon}
\newcommand{\SLI}{S^{[I]}}
\newcommand{\CSLI}{C(S^{[I]})}
\newcommand{\CLI}{C(L)^{[I]}}
\newcommand{\mSI}{\models_{\SI}}
\newcommand{\mS}{\models_{\S}}
\newcommand{\tu}{t_{1}}
\newcommand{\tn}{t_{n}}
\newcommand{\tk}{t_{k}}
\renewcommand{\S}{\Sigma}
\newcommand{\s}{\sigma}
\newcommand{\Sn}{\Sigma_{n}}
\newcommand{\Sw}{\Sigma_{w}}
\newcommand{\wu}{w_{1}}
\newcommand{\wn}{w_{n}}
\newcommand{\wi}{w_{i}}
\newcommand{\wj}{w_{j}}
\newcommand{\yu}{y_{1}}
\newcommand{\yn}{y_{n}}
\newcommand{\yi}{y_{i}}
\newcommand{\yj}{y{j}}
\newcommand{\zu}{z_{1}}
\newcommand{\zn}{z_{n}}
\newcommand{\zk}{z_{k}}
\newcommand{\zi}{z_{i}}
\newcommand{\xu}{x_{1}}
\newcommand{\xn}{x_{n}}
\renewcommand{\xi}{x_{i}}
\newcommand{\xj}{x_{j}}
\newcommand{\wk}{w_{k}}
\newcommand{\xk}{x_{k}}
\newcommand{\yk}{y_{k}}
\newcommand{\su}{s_{1}}
\newcommand{\sn}{s_{n}}
\newcommand{\sj}{s_{j}}
\newcommand{\sk}{s_{k}}
\newcommand{\Imp}{\Rightarrow}
\newcommand{\SI}{\S_{I}}
\newcommand{\EI}{E_{I}}
\renewcommand{\phi}{\varphi}
\newcommand{\bw}{\bigwedge}
\newcommand{\bv}{\bigvee}
\newcommand{\w}{\wedge}
\renewcommand{\v}{\vee}
\renewcommand{\phi}{\varphi}
\newcommand{\phii}{\phi_{i}}
\newcommand{\phij}{\phi_{j}}
\newcommand{\phik}{\phi_{k}}
\newcommand{\phiu}{\phi_{1}}
\newcommand{\phin}{\phi_{n-1}}
\newcommand{\unen}{\{1,\ldots,n\}}
\newcommand{\ffu}{f_{1}}
\newcommand{\ffn}{f_{n}}
\newcommand{\ffi}{f_{i}}
\newcommand{\ffj}{f_{j}}
\newcommand{\ffk}{f_{k}}
\newcommand{\orc}{\forall}
\newcommand{\exi}{\exists}
\newcommand{\au}{a_{1}}
\newcommand{\an}{a_{n}}
\newcommand{\ai}{a_{i}}
\newcommand{\aj}{a_{j}}
\newcommand{\ak}{a_{k}}
\newcommand{\bu}{b_{1}}
\newcommand{\bn}{b_{n}}
\newcommand{\bi}{b_{i}}
\newcommand{\bj}{b_{j}}
\newcommand{\bk}{b_{k}}
\newcommand{\ra}{\rightarrow}
\renewcommand{\P}{{\cal P}}
\newcommand{\N}{{I\!\!N}}
\newcommand{\p}{\oplus}
\newcommand{\cd}{\odot}
\newcommand{\unmu}{\{1,\ldots,n-1\}}
\newcommand{\Ss}{S_{\sigma}}
\newcommand{\Th}{\Theta}
\newcommand{\ThS}{\Theta_{\S}}
\newcommand{\Luk}{ {\cal L}uk_{n} }
\newcommand{\Gen}{{\cal NMVA}_{n}}
\newcommand{\CGen}{{\cal NMVA}_{n}}
\newcommand{\GR}{{\cal NLGU}_{n}}
\newcommand{\gr}{NLGU_{n}}
\newcommand{\NMVN}{{\cal NMVA}_n}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\labto}[1]{\overset{#1}{\lra}}
\newcommand{\midsq}[1]{\save\go[0,0];[1,1]:(0.5,0) \drop{#1}\restore}
%the following allows for longer arrows with long labels
%the first entry gives the additional length and the second gives the label
%e.g. \llabto{0.75}{\rm{long label}}
\newcommand{\llabto}[2]{\stackrel{#2}
{\rule[0.5ex]{#1 em}{0.05ex}\hspace{-0.4em}\longrightarrow}}
%the next gives two direction arrows at the top of a 2 x 2 matrix
\newcommand{\directs}[2]{\def\objectstyle{\scriptstyle} \objectmargin={0pt}
\xy (0,4)*+{}="a",(0,-2)*+{\rule{0em}{1.5ex}#2}="b",(7,4)*+{\;#1}="c" \ar@{->} "a";"b"
\ar @{->}"a";"c" \endxy }
%the next gives two direction arrows at the middle of a 2 x 2 matrix
\newcommand{\xdirects}[2]{\def\objectstyle{\scriptstyle} \objectmargin={0pt}
\xy (0,0)*+{}="a",(0,-6)*+{\rule{0em}{1.5ex}#2}="b",(7,0)*+{\;#1}="c" \ar@{->} "a";"b"
\ar @{->}"a";"c" \endxy }
%and this is smaller for a 1 x 1 matrix
\newcommand{\sdirects}[2]{\def\objectstyle{\scriptstyle} \objectmargin={0pt}
\xy (0,2.2)*+{}="a",(0,-2.5)*+{\rule{0em}{1.5ex}#2}="b",(7,2.2)*+{\;#1}="c" \ar@{->}
"a";"b" \ar @{->}"a";"c" \endxy }
% the following are codes for the identities and connections
\newcommand{\bl}{\mbox{\rule{0.08em}{1.7ex}\hspace{-0.00em}\rule{0.7em}{0.2ex}}}
\newcommand{\br}{\mbox{\rule{0.7em}{0.2ex}\hspace{-0.04em}\rule{0.08em}{1.7ex}}}
\newcommand{\tr}{\mbox{\rule[1.5ex]{0.7em}{0.2ex}\hspace{-0.03em}\rule{0.08em}{1.7ex}}}
\newcommand{\tl}{\mbox{\rule{0.08em}{1.7ex}\rule[1.54ex]{0.7em}{0.2ex}}}
\newcommand{\hh}{\mbox{\rule{0.7em}{0.2ex}\hspace{-0.7em}\rule[1.5ex]{0.70em}{0.2ex}}}
\newcommand{\vv}{\mbox{\rule{0.08em}{1.7ex}\hspace{0.6em}\rule{0.08em}{1.7ex}}}
\newcommand{\sq}{\mbox{\rule{0.08em}{1.7ex}\hspace{-0.00em}\rule{0.7em}{0.2ex}\hspace{-0.7em}\rule[1.54ex]{0.7em}{0.2ex}\hspace{-0.03em}\rule{0.08em}{1.7ex}}}
\newcommand{\tsq}{\mbox{\rule{0.04em}{1.55ex}\hspace{-0.00em}\rule{0.7em}{0.1ex}\hspace{-0.7em}\rule[1.5ex]{0.7em}{0.1ex}\hspace{-0.03em}\rule{0.04em}{1.55ex}}}
\newcommand{\tssq}{\mbox{\rule{0.04em}{1.55ex}\hspace{-0.00em}\rule{0.7em}{0.1ex}\hspace{-0.7em}\rule[1.5ex]{0.7em}{0.1ex}\hspace{-0.03em}\rule{0.04em}{1.55ex}\hspace{-0.43em}\rule[0.7ex]{0.1em}{0.2ex}}}
\newcommand{\quads}[4]{\left( #1 \hspace{1em}
\overset{\textstyle{#2}}{\underset{\textstyle{#4}} {\rule{0mm}{1mm}}} \hspace{1em} #3
\right)}
\def\bu{\bullet}
\def\prt{\partial}
\def\eps{\varepsilon}
\def\red{\textcolor{red}}
\def\blue{\textcolor{blue}}
\def\leq{\leqslant}
\def\geq{\geqslant}
\def\le{\leqslant}
\def\ge{\geqslant}
\begin{document}
This is a topic entry on the \htmladdnormallink{algebraic category}{http://planetphysics.us/encyclopedia/CategoryOfLogicAlgebras.html} of \L{}ukasiewicz--Moisil n-valued logic algebras that provides basic concepts and the background of the modern development in this area of many-valued logics.
\subsection{Introduction}
The \emph{\htmladdnormallink{category}{http://planetphysics.us/encyclopedia/Cod.html} $\mathcal{LM}$ of \L{}ukasiewicz-Moisil, $n$-valued logic algebras ($LM_n$), and $LM_n$--lattice morphisms}, $\lambda_{LM_n}$, was introduced in 1970 in ref. \cite{GG-CV70} as an algebraic category tool for $n$-valued logic studies. The \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of $\mathcal{LM}$ are the \emph{non--commutative} $LM_n$ lattices and the \htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of $\mathcal{LM}$ are the $LM_n$-lattice morphisms as defined here in the \htmladdnormallink{section}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} following a brief historical note.
\subsection{History}
\L{}ukasiewicz \emph{logic algebras} were constructed by Grigore Moisil in 1941 to define `nuances' in logics, or many-valued logics, as well as 3-state control logic (electronic) circuits. \L{}ukasiewicz-Moisil ($LM_n$) logic algebras were defined axiomatically in 1970, in ref. \cite{GG-CV70}, as n-valued logic algebra \htmladdnormallink{representations}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} and extensions of the \L ukasiewcz (3-valued) logics; then, the universal properties of categories of $LM_n$ -logic algebras were also investigated and reported in a series of recent publications (\cite{GG2k6} and references cited therein).
Recently, several modifications of {\em $LM_n$-logic algebras} are under consideration as valid candidates for representations of {\em \htmladdnormallink{quantum logics}{http://planetphysics.us/encyclopedia/LQG2.html}}, as well as for modeling non-linear biodynamics in genetic `nets' or networks (\cite{ICB77}), and in single-cell organisms, or in tumor growth. For a recent review on $n$-valued logic algebras, and major published results, the reader is referred to \cite{GG2k6}.
\subsection{Definition of \L{}ukasiewicz--Moisil (LM), n-valued logic algebras}
\begin{definition}\rm (reported by G. Moisil in 1941, cited in refs. \cite{GG-CV70,GG2k6}).
A {\it $n$--valued \L ukasiewicz--Moisil algebra}, ({\it $LM_{n}$--algebra}) is a structure of the form
$(L,\vee,\wedge,N,(\phii)_{i\in\{1,\ldots,n-1\}},0,1)$, subject to the following axioms:
\begin{itemize}
\item (L1) $(L,\vee,\wedge,N,0,1)$ is a {\it de Morgan algebra}, that is, a bounded distributive lattice with a decreasing involution $N$ satisfying the de Morgan property $N({x\vee y})=Nx\wedge Ny$;
\item (L2) For each $i\in\{1,\ldots,n-1\}$, $\phii:L\lra L$ is a lattice endomorphism;\footnote{ The $\phii$'s are called the {\em Chrysippian endomorphisms} of $L$.}
\item (L3) For each $i\in\{1,\ldots,n-1\},x\in L$, $\phii(x)\vee N{\phii(x)}=1$ and
$\phii(x)\wedge N{\phii(x)}=0$;
\item (L4) For each $i,j\in\{1,\ldots,n-1\}$, $\phii\circ\phi_{j}=\phi_{k}$ iff $(i+j)= k$;
\item (L5) For each $i,j\in\{1,\ldots,n-1\}$, $i\leq j$ implies $\phii\leq\phi_{j}$;
\item (L6) For each $i\in\{1,\ldots,n-1\}$ and $x\in L$, $\phii(N x)=N\phi_{n-i}(x)$.
\item (L7) Moisil's `determination principle':
$$\left[\orc i\in\{1,\ldots,n-1\},\;\phii(x)=\phii(y)\right] \; implies \; [x = y] \;.$$
\end{itemize}
\end{definition}
\begin{exe}\rm
Let $L_n=\{0,1/(n-1),\ldots,(n-2)/(n-1),1\}$. This set can be naturally endowed with an $\mbox{LM}_n$
--algebra structure as follows:
\begin{itemize}
\item the bounded lattice \htmladdnormallink{operations}{http://planetphysics.us/encyclopedia/Cod.html} are those induced by the usual order on rational numbers;
\item for each $j\in\{0,\ldots,n-1\}$, $N(j/(n-1))=(n-j)/(n-1)$;
\item for each $i\in\{1,\ldots,n-1\}$ and $j\in\{0,\ldots,n-1\}$,
$\phii(j/(n-1))=0$ if $j<i$ and $=1$ otherwise.
\end{itemize}
\end{exe}
Note that, for $n=2$, $L_n=\{0,1\}$, and there is only one Chrysippian endomorphism of $L_n$ is $\phi_1$, which
is necessarily restricted by the determination principle to a bijection, thus making $L_n$ a Boolean algebra (if
we were also to disregard the redundant bijection $\phi_1$). Hence, the `overloaded' notation $L_2$, which is
used for both the classical Boolean algebra and the two--element $\mbox{LM}_2$--algebra, remains consistent.
\begin{exe}\rm
Consider a Boolean algebra $(B,\v,\w,{}^-,0,1)$. Let $T(B)=\{(x_1,\ldots,x_n)\in B^{n-1}\mid x_1\leq\ldots\leq
x_{n-1}\}$. On the set $T(B)$, we define an $\mbox{LM}_n$-algebra structure as follows:
\begin{itemize}
\item the lattice operations, as well as $0$ and $1$, are defined component--wise from $\Ld$;
\item for each $(x_1,\ldots,x_{n-1})\in T(B)$ and $i\in\{1,\ldots,n-1\}$ one has:\\
$N(x_1,\ldots x_{n-1})=(\ov{x_{n-1}},\ldots,\ov{x_1})$ and $\phii(x_1,\ldots,x_n)=(x_i,\ldots,x_i) .$
\end{itemize}
\end{exe}
\begin{thebibliography}{9}
\bibitem{GG-CV70}
Georgescu, G. and C. Vraciu. 1970, On the characterization of centered \L{}ukasiewicz
algebras., {\em J. Algebra}, \textbf{16}: 486-495.
\bibitem{GG2k6}
Georgescu, G. 2006, N-valued Logics and \L ukasiewicz-Moisil
Algebras, \emph{Axiomathes}, \textbf{16} (1-2): 123-136.
\bibitem{ICB77}
Baianu, I.C.: 1977, A Logical Model of Genetic Activities in \L ukasiewicz Algebras: The Non-linear Theory. \emph{Bulletin of Mathematical Biology}, \textbf{39}: 249-258.
\bibitem{GGDP68}
Georgescu, G. and D. Popescu. 1968, On Algebraic Categories,
\emph{Revue Roumaine de Math\'ematiques Pures et Appliqu\'ees}, \textbf{13}:
337-342.
\end{thebibliography}
\end{document}