Jump to content

Talk:Information theory/Permutations and combinations

Page contents not supported in other languages.
Add topic
From Wikiversity

Back to Information theory/Permutations and combinations

Alternative proof (submitted to WP)

[edit source]

Lifted from Multinomial Theorem of 2ⁿᵈ kind by w:User:Seeker220

Theorem : The number of non-negative integral solution of the equation is Proof : Let Let ∴ Each term of will be of the form

  1. For each unique non-negative solution of Equation-1, there exist a unique monomial term of degree n of .
  2. For each unique monomial term of , there exists an unique non-negative solution of Equation-1
  3. No unique non-negative solution of Equation-1 yields two different monomial terms of .
  4. No unique monomial term of yields two different non-negative solution of Equation-1.

Thus, by bijection ,

Thus, to prove the theorem, it is sufficient to prove that number of terms of is

Now, we shall proceed by Mathematical Induction.

  • Base Case: for k=1 is , which has terms.

Also, for k=2, is , which has .

  • Induction Hypothesis: Let for some ,
  • Inductive Step: We have to prove that for too,

Thus,

Labeling every proton in the universe

[edit source]
FasciiThe 95 printable ASCII characters includes the invisible space, shown above E

Suppose we adopt a labeling system by which This problem is inspired by the ASCII code (see Fascii), as well as the fact that there are an estimated protons in the visible universe.

To illustrate how much information even a modest number of characters can transmit, consider strings made from permutations of the 94 ASCII characters that are both printable and visible. One benefit of performing this calculation is that it highlights the superior accuracy of the second order approximation,

,

to the first order approximation favored by those who are only comfortable with base-10 logarigthms:

A calculation like this should be left as an exercise for students, who are encouraged to post their calculations on Wikiversity. What follows is this Wikiversarian's work resulting from performing the calculation using two different tools available to anybody with internet access: First, Google Search was used as an online calculator. Second, Google Documents was used to generate a spreadsheet. Both calculations give the same result.

Google Search as a Calculator

[edit source]

By hand (without calculato)r

[edit source]


Both require Sterling's approximation

[edit source]

use

and since, , we have

Spreadsheet

[edit source]

https://tableconvert.com/csv-to-mediawiki

Formula log10(n!) ln(n!) log10(n!) n! estimate Normalize inverse
fact(94) 146.0 336.3 146.0 exact 1.1E+146 1 1
94 log10 94 185.5 427.1 185.5 n log10(n_ 3.0E+185 1.2701 0.7874
94ln94-94 144.7 333.1 144.7 n ln n - n 4.5E+144 0.9905 1.0096
base-2 Check: compare w ss
"log(94,2)" 6.5546 fact(94)= 146.0 1
"94*log*(94,2)" 616.1314 94 log10 94 185.5 1
2^{above} 2.98E+185 ln(94!) ~ 144.7 1
log10(above) 185.4740

Back to Information theory/Permutations and combinations